Basis Pursuit Denoise with Nonsmooth Constraints *with applications to compressed sensing*

Robert Baraldi¹, Rajiv Kumar², and Aleksandr Aravkin¹

¹Department of Applied Mathematics, University of Washington ²Formerly School of Earth and Atmospheric Sciences, Georgia Institute of Technology, USA; Currently DownUnder GeoSolutions, Perth, Australia

Acknowledgments: The authors acknowledge support from the Department of Energy Computational Science Graduate Fellowship, which is provided under grant number DE-FG02-97ER25308.

1 Introduction

• Basis Pursuit Denoise (BPDN) seeks sparse solution to an ill-posed

Dependent on size of operators; can impose reductions.
Solve x directly via the gradient, create block matrix F:

Table 1: SNR values against the true x for different combinations of sparsityinducing $\phi = \ell_1$, ℓ_0 and $\psi = \ell_2$, ℓ_0 norms with SPGL1, CVX, and Alg. 2.

Spile Train RDDN

system of equations corrupted by noise.

• Classic level set/Morozov formulation [1]:

$$\min_{x} \phi(\mathcal{C}(x)) \quad \text{s.t.} \quad \psi(\mathcal{A}(x) - b) \le \sigma, \tag{1}$$

for $\phi(\cdot) = \ell_1$, $\psi(\cdot) = \ell_2$ and $\mathcal{A} : \mathbb{R}^{m \times n} \to \mathbb{R}^d$ a linear functional taking $x \in \mathbb{R}^{m \times n}$ to observations $b \in \mathbb{R}^d$ within error σ .

- Applications in low-rank interpolation and denoising; promote sparse representations in Fourier [4] or Curvelet [3] domains.
- Noise is falsely assumed to be smooth, Gaussian ℓ_2 norm; prior work exploits the smoothness of inequality constraint in Eq. 1.
- The **problem**: BPDN uses nonsmooth regularizers, but the inequality constraint is ubiquitously smooth.
- Contributions:
- Fast, easily adaptable algorithm to solve non-smooth and nonconvex data constraints in general level-set formulations for largescale interpolation and denoising problems.
- -Simple convergence criteria to critical points for nonconvex/nonsmooth formulations of Eq. 1.

2 Nonsmooth/nonconvex level-set

2.1 **Problem Assumptions**

• Eq. 1 ϕ and ψ may be nonsmooth, nonconvex, but have well-defined proximity and projection operators:

$$\operatorname{prox}_{\eta\phi}(y) = \operatorname*{arg\,min}_{x} \frac{1}{2\eta} \|x - y\|^{2} + \phi(x)$$
$$\operatorname{proj}_{\psi(\cdot) \le \sigma} = \operatorname*{arg\,min}_{\psi(x) \le \sigma} \frac{1}{2\eta} \|x - y\|^{2}.$$

(2)

(4)

$$x(w) = \mathcal{H}^{-1}\left(\left[\frac{\mathcal{C}^{T}}{\eta_{1}} \frac{\mathcal{A}^{T}}{\eta_{2}}\right] w + \frac{\mathcal{A}^{T} b}{\eta_{2}}\right), \ \mathcal{H} = \frac{\mathcal{C}^{T} \mathcal{C}}{\eta_{1}} + \frac{\mathcal{A}^{T} \mathcal{A}}{\eta_{2}}$$
$$\min_{w_{1}, w_{2}} p(w) := \phi(w_{1}) + \left\|\mathcal{F}w - \tilde{b}\right\|^{2} \quad \text{s.t.} \quad \psi(w_{2}) \leq \sigma \quad (5)$$
• Prox-gradient applied to the value function $p(w)$ in (5) with step β :

$$w^{+} = \operatorname{prox}_{\beta\Phi}(w^{k} - \beta \mathcal{F}^{T}(\mathcal{F}w - \widetilde{b}))$$
(6)

• Compute optimal β by bounding singular values: Lemma 2.2 (Bound on $\|\mathcal{F}^T \mathcal{F}\|_2$). The operator norm $\|\mathcal{F}^T \mathcal{F}\|_2$ is bounded above by $\max\left(\frac{1}{\eta_1}, \frac{1}{\eta_2}\right)$.

• Combine iteration (6) with Corollary 2.1 to get a rate of convergence for Algorithm 2.

Corollary 2.3 (Convergence of Algorithm 2). When β satisfies

 $\beta \leq \min(\eta_1, \eta_2),$ and $\eta_1 = \eta_2$, then for $\nu^k \in \partial p(w^k)$, the iterates of Alg. 2 satisfy $\min_{k=0,...,N} \|\nu^{k+1}\|^2 \leq \frac{1}{N} \max\left(\frac{1}{\eta_1}, \frac{1}{\eta_2}\right) (p(w^0) - \inf p)).$

Algorithm 2 Block-coordinate descent for (3).1: Input: x^0, w_1^0, w_2^0 2: Initialize: k = 03: Define: $\mathcal{H} = \frac{1}{\eta_1} \mathcal{C}^T \mathcal{C} + \frac{1}{\eta_2} \mathcal{A}^T \mathcal{A}$ 4: while not converged do5: $x^{k+1} \leftarrow \mathcal{H}^{-1} \left(\frac{1}{\eta_1} \mathcal{C}^T w_1^k + \frac{1}{\eta_2} \mathcal{A}^T (b + w_2^k) \right)$ 6: $w_1^{k+1} \leftarrow \operatorname{prox}_{\eta_1 \phi} \left(\mathcal{C}(x^{k+1}) \right)$ 7: $w_2^{k+1} \leftarrow \operatorname{proj}_{\sigma \mathbb{B}_{\psi}} \left(\mathcal{A}(x^{k+1}) - b \right) \right)$

Spike-main DI DN					
$\phi(\cdot)/\psi(\cdot)$	Method	SNR			
ℓ_1 / ℓ_2	SPGL1	0.2007			
ℓ_1 / ℓ_2	Alg.2	0.2032			
ℓ_1 / ℓ_1	CVX	35.3611			
ℓ_1 / ℓ_1	Alg.2	33.7281			
ℓ_1 / ℓ_0	Alg.2	45.0601			
ℓ_0 / ℓ_0	Alg.2	44.4239			

4 Basis Pursuit: Curvelets

• Goal: Recover missing sources and denoise observed sources while enforcing sparsity in the Curvelet domain. Data has temporal sampling of 4ms, and spatial sampling is at 10ms.

• **Results:** Recaptured source-gathers with different choices of ψ and ϕ , successfully enforcing sparse-noise constraint.

• $C : \mathbb{C}^{m \times n} \to \mathbb{R}^c$ is a linear transform domain operator. • $\mathcal{A} : \mathbb{C}^{m \times n} \to \mathbb{R}^d$ is a linear observation/restriction operator.

2.2 Relaxation & Naive Algorithm

• Relax ϕ, ψ in Eq. (1) from \mathcal{A} and \mathcal{C} with $w_1 \in \mathbb{R}^c$ and $w_2 \in \mathbb{R}^d$

$$\min_{\substack{x,w_1,w_2}} \phi(w_1) + \frac{1}{2\eta_1} \|\mathcal{C}(x) - w_1\|^2 + \frac{1}{2\eta_2} \|w_2 - \mathcal{A}(x) + b\|_2^2 \quad (3)$$
s.t. $\psi(w_2) \le \sigma$.

• Force $\eta_i \to 0$ in order to solve the original formulation (1). • Noise algorithms prove gradient descent 1: $x = [x + y]^T$ or

• Naive algorithm: prox-gradient descent 1: $z = [x, w_1, w_2]^T$ and

 $f(z) = \frac{1}{2} \left\| \begin{bmatrix} \frac{1}{\sqrt{\eta_1}} \mathcal{C} & -\frac{1}{\sqrt{\eta_1}} I & 0\\ \frac{1}{\sqrt{\eta_2}} \mathcal{A} & 0 & -\frac{1}{\sqrt{\eta_2}} I \end{bmatrix} z - \begin{bmatrix} 0\\ b \end{bmatrix} \right\|^2$

and $\Phi(z) = \phi(w_1) + \delta_{\psi(\cdot) \leq \sigma}(w_2)$ for *indicator function* $\delta_{\psi(\cdot) \leq \sigma}$. • Apply the prox-gradient descent iteration with step-size β

 $z^{k+1} = \operatorname{prox}_{\beta\Phi}(z^k - \beta\nabla f(z^k))$

Algorithm 1 Prox-gradient for (3).

- 1: Input: x^0, w_1^0, w_2^0
- 2: Initialize: k = 0
- 3: while not converged do

$$x^{k+1} \neq x^{k} - \beta \left(\frac{1}{\eta_1} \mathcal{C}^T(\mathcal{C}(x) - w_1)\right)$$

8:
$$k \leftarrow k + 1$$

9: **end while**
10: **Output:** w_1^k, w_2^k, x^k

• Convergence rate of Alg. 2 independent of $\mathcal{C} \& \mathcal{A}$; only η_i .

Reduce FLOPs: compute x inexactly with fixed # PCG iterations.
Continuation in η_i drives (η₁, η₂) to (0,0) at the same rate, and warm-starting each problem at the previous solution.

3 Basis Pursuit: Spike Train

• Goal: Recapture spike train from observations $b \in \mathbb{R}^m$ corrupted with large sparse noise (10%, clean elsewhere) and known Gaussian operator $A \in \mathbb{R}^{n,m}$ ((n,m) = (120, 512)).

• **Results:** Recovered spike train with different ϕ and ψ .

(e) $\phi = \ell_1, \ \psi = \ell_1$ (f) $\phi = \ell_1, \ \psi = \ell_0$

Figure 3: Interpolation and denoising results for BPDN in the curvelet domain. Observe the complete inaccuracy of smooth norms with large, sparse noise.

Table 2: Curvelet Interpolation and Denoising results with different combinations of sparsity-inducing $\phi = \ell_1$, ℓ_0 , and $\psi = \ell_2$, ℓ_0 norms for BPDN (1).

Curvelet Interpolation & Denoising						
$\phi(\cdot)/\psi(\cdot)$	Method	SNR	SNR w_1	Time (s)		
ℓ_1 / ℓ_2	SPGL1	1.4857	-	51.4 (early stoppage)		
ℓ_1 / ℓ_2	Alg.2	0.9769	0.9693	4043		
ℓ_1 / ℓ_1	Alg.2	14.9574	14.9436	5037		
ℓ_1 / ℓ_0	Alg.2	14.9212	14.9142	4256		
la / la	$\Lambda 1 \sigma 2$	1/ 0/2	13 7000	1086		

4. $x \mapsto (1 + \frac{1}{\eta_2}\mathcal{A}^T(\mathcal{A}(x) - w_2^k - b))$ 5. $w_1^{k+1} \leftarrow \operatorname{prox}_{\beta\phi} \left(w_1^k - \frac{\beta}{\eta_1}(w_1^k - \mathcal{C}(x^{k+1})) \right)$ 6. $w_2^{k+1} \leftarrow \operatorname{proj}_{\sigma \mathbb{B}_{\psi}} \left(w_2^k - \frac{\beta}{\eta_2}(w_2^k - (\mathcal{A}(x^{k+1}) - b)) \right)$ 7. $k \leftarrow k + 1$ 8. end while 9. Output: w_1^k, w_2^k, x^k

2.3 Convergence and Reduction

• Problem 3 is semi-algebraic \Rightarrow Alg. 1 \rightarrow critical point [2]. **Corollary 2.1** (Rate for Algorithm 1). For $min_z p(z) := \frac{1}{2} ||Gz - g||^2 + \Phi(z)$, Problem 3 gives

$$\begin{split} \min_{k=0,...,N} \|\nu^{k+1}\|^2 &\leq C(\eta_1,\eta_2,\mathcal{C},\mathcal{A}) \frac{1}{N} (p(z^0) - \inf p) \\ \text{with } \nu^k &= (\|G\|_2^2 I - G^T G) (z^k - z^{k+1}) \in \partial p(z^{k+1}) \text{ and} \\ C(\eta_1,\eta_2,\mathcal{C},\mathcal{A}) &= \frac{1}{\eta_1} (c + \|\mathcal{C}\|_F^2) + \frac{1}{\eta_2} (d + \|\mathcal{A}\|_F^2). \end{split}$$

Figure 2: Sparse signal results solving Problem 1 where ϕ and ψ are varied. The ℓ_1 - and ℓ_0 norms can capture the outliers only.

10/10 Alg.2 14.042 15.7999

5 Conclusions & Future Directions

• Reduce Problem 1 to sum of quadratic and nonconvex regularizer, allowing simple proximal gradient method.

TUUU

• Clear rate of convergence, independent of C and A.

• Proposed a novel approach for level-set formulations, with extensions to residual-constrained low-rank formulations.

• Easily adapted to a variety of nonsmooth and nonconvex ϕ, ψ .

• Algorithms are simple, scalable, and efficient.

References

[1] A. Y. Aravkin, J. V. Burke, D. Drusvyatskiy, M. P. Friedlander, and S. Roy. Level-set methods for convex optimization. *To appear in Mathematical Programming, Series B.*, 2018.

[2] H. Attouch, J. Bolte, and B. Fux Svaiter. Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods. *Mathematical Programming*, 137(1-2):91–129, 2013.

[3] F. J. Herrmann and G. Hennenfent. Non-parametric seismic data recovery with curvelet frames. *Geophysical Journal International*, 173(1):233–248, 2008.

[4] M. D. Sacchi, T. J. Ulrych, and C. J. Walker. Interpolation and extrapolation using a high-resolution discrete fourier transform. *IEEE Transactions on Signal Processing*, 46(1):31–38, Jan 1998.