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1 Introduction

* Basis Pursuit Denoise (BPDN) seeks sparse solution to an 1ll-posed
system of equations corrupted by noise.

e Classic level set/Morozov formulation [1]:

min¢(C(z)) st P(Alz) —b) <o, (1)

for ¢(-) = 41, ¥(-) = 9 and A : R™*" — R? a linear functional
taking z € R"*" to observations b € R? within error o.

e Applications in low-rank interpolation and denoising; promote
sparse representations in Fourier [4] or Curvelet [3] domains.

* Noise is falsely assumed to be smooth, Gaussian /o norm; prior
work exploits the smoothness of inequality constraint in Eq. 1.

e The problem: BPDN uses nonsmooth regularizers, but the inequal-
1ty constraint 1s ubiquitously smooth.

e Contributions:

— Fast, easily adaptable algorithm to solve non-smooth and noncon-
vex data constraints in general level-set formulations for large-
scale interpolation and denoising problems.

— Simple convergence criteria to critical points for noncon-
vex/nonsmooth formulations of Eq. 1.

2 Nonsmooth/nonconvex level-set

2.1 Problem Assumptions

* Eq. 1 ¢ and v may be nonsmooth, nonconvex, but have well-defined
proximity and projection operators:

1
pros(y) = arg min 5 = -+ o)
€T
| n—Jz — g’ 2
PIO.i(.\<, = argmin —||z — y||°.
vii=e (w)<o 21

o C . C"*" — RC€is a linear transform domain operator.

e A: C™*" 5 RY s a linear observation/restriction operator.

2.2 Relaxation & Naive Algorithm

e Relax ¢, v in Eq. (1) from A and C with w; € R¢ and wy € R?

| | |
min ¢(wy) + 2—m||C(SL’) — w1H2 + —|lwy — A(z) + b”%

X, W1,W2 2772

s.t.  Y(wg) < 0.

3)

* Force n; — 0 1n order to solve the original formulation (1).

* Naive algorithm: prox-gradient descent 1: z = |x, wy, wQ]T and
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and ®(z) = ¢(wi) + 0y <, (w2) for indicator function 0.\ <.
» Apply the prox-gradient descent iteration with step-size 3

. ]Qr()}cﬁq)(zl€ — ﬁVf(zk)) (4)

Algorithm 1 Prox-gradient for (3).

1: Input: wo, w?, wg

2: Initialize: £ =0
3. while not converged do

kg Llet T) — W

k+1

4: T <—

+niAT (A(z) — wh — b))
2
5: w]fH < ProxXgg (wiC — nﬁ(wlf - C(ajk+1)))

1
6 wlgﬂ < Proj,B, (wéj — %(wg — (A(z1) — b)))
7: k+ k+1
8: end while
9. OQutput: w]f,wlg,xk

2.3 Convergence and Reduction

e Problem 3 is semi-algebraic = Alg. 1 — critical point [2].

Corollary 2.1 (Rate for Algorithm 1). For min,p(z) = %”G .
gl|? + ®(z), Problem 3 gives

1
k:%”f}ENHV |7 < Clm. o, €, A)(p(27) — inf p)

with V% = (|G|)31 — GTG)(2F — K1) € ap(2F ) and

1 1
Clmsms € A) = e+ ICII5) + —(d+ IAl%).

e Dependent on size of operators; can impose reductions.

» Solve x directly via the gradient, create block matrix

T T T
r(w) =H! [C—TA—T]UH—ﬁ Hngr—AA
T ) m 72

min p(w) = ¢(wy) + H]:w — EHQ s.t. Y(wg) <o (5)

wi,W2

* Prox-gradient applied to the value function p(w) in (5) with step f:
wh = pl“Ong;(U]k — BFL(Fw - b)) (6)

e Compute optimal 5 by bounding singular values:

Lemma 2.2 (Bound on || F! F||). The operator norm | FL Fl|5 is
1 1

m' )

e Combine iteration (6) with Corollary 2.1 to get a rate of conver-
gence for Algorithm 2.

bounded above by max

Corollary 2.3 (Convergence of Algorithm 2). When (3 satisfies

B < min(ng,12),
and ny = 1y, then for V¥ € 8p(wk), the iterates of Alg. 2 satisfy

1 1 1
: k+1 2 0 '
min __||v < —max , p(w inf p)).
k_—o,...,NH | N (771 772> (p(w’) )

Algorithm 2 Block-coordinate descent for (3).

Input: .CEO, w(l), wg

Initialize: £ = 0
Define: H = %CTC + %ATA
while not converged do

k+1 —1 (1T 'k 1 4T k
5: et — H (EC w1+%¢4 (b+w2))
6: w]fJrl < prox,, (C(xk+1)>

7: wlgﬂ < proj,m, (A(a}kH) — b))
8: k<+ k—+1

9. end while

10: Output: w]f,wlg,a:k

il

e Convergence rate of Alg. 2 independent of C & A; only n;.
* Reduce FLLOPs: compute z inexactly with fixed # PCG 1iterations.

e Continuation in n; drives (n1,72) to (0,0) at the same rate, and
warm-starting each problem at the previous solution.

3 Basis Pursuit: Spike Train

» Goal: Recapture spike train from observations b € R""* corrupted
with large sparse noise (10%, clean elsewhere) and known Gaussian

operator A € R™"™ ((n,m) = (120, 512)).

(a) True Signal: x = 41 on %4 of entries, 0 everywhere else.
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(b) True transformed signal: Ax

(¢) Observed/noisy values: b

Figure 1: True signal, transformed signal, and noisy signals.

* Results: Recovered spike train with different ¢ and .
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Figure 2: Sparse signal results solving Problem 1 where ¢ and v are varied. The
¢1- and ¢y norms can capture the outliers only.

Table 1: SNR values against the true = for different combinations of sparsity-
inducing ¢ = (1, ¢y and ¢y = {5, ¢y norms with SPGL1, CVX, and Alg. 2.

Spike-Train BPDN

¢(-)/¢(-) | Method, SNR

¢1 /¢35 | SPGL1 | 0.2007
81 / 62 Alg.2 0.2032
¢1 /¢ | CVX [35.3611
01 /0 | Alg.2 |33.7281
01/ by | Alg.2 [45.0601
by /by | Alg.2 144.4239

4 Basis Pursuit: Curvelets

* Goal: Recover missing sources and denoise observed sources while
enforcing sparsity in the Curvelet domain. Data has temporal sam-
pling of 4ms, and spatial sampling 1s at 10ms.

e Results: Recaptured source-gathers with different choices of ¢ and
@, successfully enforcing sparse-noise constraint.

(b) Added Noise (binary)

) ¢o=10, v=~04

Figure 3: Interpolation and denoising results for BPDN in the curvelet domain.
Observe the complete inaccuracy of smooth norms with large, sparse noise.

Table 2: Curvelet Interpolation and Denoising results with different combinations
of sparsity-inducing ¢ = (1, ¢y, and ¢ = {5, £y, norms for BPDN (1).

Curvelet Interpolation & Denoising

¢(-)/¢(-) | Method SNR |SNR w; Time (s)

(1 /¢y | SPGL1 | 1.4857 - 51.4 (early stoppage)
01/l | Alg2 | 09769  0.9693 4043

01 /0, | Alg2 |14.9574 14.9436 5037

01/ 6y | Alg.2 14.9212 14.9142 4256

o/ ly | Alg2 | 14.042 13.7999 4086

S5 Conclusions & Future Directions

e Reduce Problem 1 to sum of quadratic and nonconvex regularizer,
allowing simple proximal gradient method.

e Clear rate of convergence, independent of C and A.

* Proposed a novel approach for level-set formulations, with exten-
sions to residual-constrained low-rank formulations.

e Easily adapted to a variety of nonsmooth and nonconvex ¢, .

* Algorithms are simple, scalable, and efficient.

References

[1] A. Y. Aravkin, J. V. Burke, D. Drusvyatskiy, M. P. Friedlander, and S. Roy. Level-set methods for convex optimization. To appear in
Mathematical Programming, Series B., 2018.

[2] H. Attouch, J. Bolte, and B. Fux Svaiter. Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms,
forward—backward splitting, and regularized gauss—seidel methods. Mathematical Programming, 137(1-2):91-129, 2013.

[3] F. J. Herrmann and G. Hennenfent. Non-parametric seismic data recovery with curvelet frames. Geophysical Journal International,
173(1):233-248, 2008.

[4] M. D. Sacchi, T. J. Ulrych, and C. J. Walker. Interpolation and extrapolation using a high-resolution discrete fourier transform. I[EEE
Transactions on Signal Processing, 46(1):31-38, Jan 1998.



