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1 Introduction
• Basis Pursuit Denoise (BPDN) seeks sparse solution to an ill-posed

system of equations corrupted by noise.
• Classic level set/Morozov formulation [1]:

min
x
φ(C(x)) s.t. ψ(A(x)− b) ≤ σ, (1)

for φ(·) = `1, ψ(·) = `2 and A : Rm×n → Rd a linear functional
taking x ∈ Rm×n to observations b ∈ Rd within error σ.

• Applications in low-rank interpolation and denoising; promote
sparse representations in Fourier [4] or Curvelet [3] domains.

• Noise is falsely assumed to be smooth, Gaussian `2 norm; prior
work exploits the smoothness of inequality constraint in Eq. 1.

• The problem: BPDN uses nonsmooth regularizers, but the inequal-
ity constraint is ubiquitously smooth.

• Contributions:
– Fast, easily adaptable algorithm to solve non-smooth and noncon-

vex data constraints in general level-set formulations for large-
scale interpolation and denoising problems.

– Simple convergence criteria to critical points for noncon-
vex/nonsmooth formulations of Eq. 1.

2 Nonsmooth/nonconvex level-set

2.1 Problem Assumptions
• Eq. 1 φ and ψ may be nonsmooth, nonconvex, but have well-defined

proximity and projection operators:

proxηφ(y) = arg min
x

1

2η
‖x− y‖2 + φ(x)

projψ(·)≤σ = arg min
ψ(x)≤σ

1

2η
‖x− y‖2.

(2)

• C : Cm×n→ Rc is a linear transform domain operator.
•A : Cm×n→ Rd is a linear observation/restriction operator.

2.2 Relaxation & Naive Algorithm
• Relax φ, ψ in Eq. (1) from A and C with w1 ∈ Rc and w2 ∈ Rd

min
x,w1,w2

φ(w1) +
1

2η1
‖C(x)− w1‖2 +

1

2η2
‖w2 −A(x) + b‖22

s.t. ψ(w2) ≤ σ.
(3)

• Force ηi→ 0 in order to solve the original formulation (1).
• Naive algorithm: prox-gradient descent 1: z = [x,w1, w2]T and

f (z) =
1

2

∥∥∥∥∥∥
 1√

η1
C − 1√

η1
I 0

1√
η2
A 0 − 1√

η2
I
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b

]∥∥∥∥∥∥
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and Φ(z) = φ(w1) + δψ(·)≤σ(w2) for indicator function δψ(·)≤σ.
• Apply the prox-gradient descent iteration with step-size β

zk+1 = proxβΦ(zk − β∇f (zk)) (4)

Algorithm 1 Prox-gradient for (3).
1: Input: x0, w0

1, w
0
2

2: Initialize: k = 0
3: while not converged do

4: xk+1←
xk − β

(
1

η1
CT (C(x)− w1)

+
1

η2
AT (A(x)− wk2 − b)

)
5: wk+1

1 ← proxβφ

(
wk1 −

β
η1

(wk1 − C(xk+1))
)

6: wk+1
2 ← projσBψ

(
wk2 −

β
η2

(wk2 − (A(xk+1)− b))
)

7: k← k + 1
8: end while
9: Output: wk1 , w

k
2 , x

k

2.3 Convergence and Reduction
• Problem 3 is semi-algebraic⇒ Alg. 1→ critical point [2].

Corollary 2.1 (Rate for Algorithm 1). For minzp(z) := 1
2‖Gz −

g‖2 + Φ(z), Problem 3 gives

min
k=0,...,N

‖νk+1‖2 ≤ C(η1, η2, C,A)
1

N
(p(z0)− inf p)

with νk = (‖G‖22I −G
TG)(zk − zk+1) ∈ ∂p(zk+1) and

C(η1, η2, C,A) =
1

η1
(c + ‖C‖2F ) +

1

η2
(d + ‖A‖2F ).

• Dependent on size of operators; can impose reductions.
• Solve x directly via the gradient, create block matrix F :

x(w) = H−1

([
CT
η1
AT
η2

]
w +
AT b
η2

)
, H =

CTC
η1

+
ATA
η2

min
w1,w2

p(w) := φ(w1) +
∥∥∥Fw − b̃∥∥∥2

s.t. ψ(w2) ≤ σ (5)

• Prox-gradient applied to the value function p(w) in (5) with step β:

w+ = proxβΦ(wk − βFT (Fw − b̃)) (6)

• Compute optimal β by bounding singular values:
Lemma 2.2 (Bound on ‖FTF‖2). The operator norm ‖FTF‖2 is
bounded above by max

(
1
η1
, 1
η2

)
.

• Combine iteration (6) with Corollary 2.1 to get a rate of conver-
gence for Algorithm 2.
Corollary 2.3 (Convergence of Algorithm 2). When β satisfies

β ≤ min(η1, η2),

and η1 = η2, then for νk ∈ ∂p(wk), the iterates of Alg. 2 satisfy

min
k=0,...,N

‖νk+1‖2 ≤ 1

N
max

(
1

η1
,

1

η2

)
(p(w0)− inf p)).

Algorithm 2 Block-coordinate descent for (3).
1: Input: x0, w0

1, w
0
2

2: Initialize: k = 0
3: Define: H = 1

η1
CTC + 1

η2
ATA

4: while not converged do
5: xk+1←H−1

(
1
η1
CTwk1 + 1

η2
AT (b + wk2 )

)
6: wk+1

1 ← proxη1φ

(
C(xk+1)

)
7: wk+1

2 ← projσBψ

(
A(xk+1)− b)

)
8: k← k + 1
9: end while

10: Output: wk1 , w
k
2 , x

k

• Convergence rate of Alg. 2 independent of C & A; only ηi.
• Reduce FLOPs: compute x inexactly with fixed # PCG iterations.
• Continuation in ηi drives (η1, η2) to (0, 0) at the same rate, and

warm-starting each problem at the previous solution.

3 Basis Pursuit: Spike Train
• Goal: Recapture spike train from observations b ∈ Rm corrupted

with large sparse noise (10%, clean elsewhere) and known Gaussian
operator A ∈ Rn,m ((n,m) = (120, 512)).

(a) True Signal: x = ±1 on %4 of entries, 0 everywhere else.

(b) True transformed signal: Ax (c) Observed/noisy values: b

Figure 1: True signal, transformed signal, and noisy signals.

• Results: Recovered spike train with different φ and ψ.

(a) Alg. 2: φ = `1, ψ = `1

(b) Alg 2: φ = `0, ψ = `0

(c) Alg 2: φ = `1, ψ = `0

Figure 2: Sparse signal results solving Problem 1 where φ and ψ are varied. The
`1- and `0 norms can capture the outliers only.

Table 1: SNR values against the true x for different combinations of sparsity-
inducing φ = `1, `0 and ψ = `2, `0 norms with SPGL1, CVX, and Alg. 2.

Spike-Train BPDN
φ(·)/ψ(·) Method SNR
`1 / `2 SPGL1 0.2007
`1 / `2 Alg.2 0.2032
`1 / `1 CVX 35.3611
`1 / `1 Alg.2 33.7281
`1 / `0 Alg.2 45.0601
`0 / `0 Alg.2 44.4239

4 Basis Pursuit: Curvelets
• Goal: Recover missing sources and denoise observed sources while

enforcing sparsity in the Curvelet domain. Data has temporal sam-
pling of 4ms, and spatial sampling is at 10ms.

• Results: Recaptured source-gathers with different choices of ψ and
φ, successfully enforcing sparse-noise constraint.

(a) True Data (b) Added Noise (binary)

(c) Noisy Data with Missing Sources (d) φ = `1, ψ = `2

(e) φ = `1, ψ = `1 (f) φ = `1, ψ = `0

Figure 3: Interpolation and denoising results for BPDN in the curvelet domain.
Observe the complete inaccuracy of smooth norms with large, sparse noise.

Table 2: Curvelet Interpolation and Denoising results with different combinations
of sparsity-inducing φ = `1, `0, and ψ = `2, `0 norms for BPDN (1).

Curvelet Interpolation & Denoising
φ(·)/ψ(·) Method SNR SNR w1 Time (s)
`1 / `2 SPGL1 1.4857 - 51.4 (early stoppage)
`1 / `2 Alg.2 0.9769 0.9693 4043
`1 / `1 Alg.2 14.9574 14.9436 5037
`1 / `0 Alg.2 14.9212 14.9142 4256
`0 / `0 Alg.2 14.042 13.7999 4086

5 Conclusions & Future Directions
• Reduce Problem 1 to sum of quadratic and nonconvex regularizer,

allowing simple proximal gradient method.

• Clear rate of convergence, independent of C and A.

• Proposed a novel approach for level-set formulations, with exten-
sions to residual-constrained low-rank formulations.

• Easily adapted to a variety of nonsmooth and nonconvex φ, ψ.

• Algorithms are simple, scalable, and efficient.
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