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Introduction
• Travel-time tomography is used to determine the underlying struc-

ture of the earth in exploratory and global seismology by solving a
data fitting (inverse) problem.

• Data quality and availability is a key constraint, motivating denois-
ing and interpolation techniques prior to inversion.

• We analyze data obtained by the Imaging Magma Under St. He-
lens (iMUSH) project, a multi-year effort to image and infer the
architecture of the greater Mount St. Helens magmatic system [1].

• iMUSH data collected:

– Active experiments initiate seismic tremors and record waves;
– Passive experiments record seismic waves from earthquakes.

• Our contributions:

– A new formulation that allows a target data misfit, smoothness,
and low-rank regularization.

– An efficient algorithm for the new formulation competitive with
state-of-the-art for denoising and interpolation methods.

Mathematical Background

Formulations for Low-rank Interpolation
• Low-rank matrix completion estimates the missing data entries of
X ∈ Rm×n from observed entries.

• For T ⊂ {1, . . . , n} × {1, . . . ,m} the set of observed entries, we
can describe the sampling operator A : Rn×m→ Rn×m

A(X) =

{
Xij, if (i, j) ∈ T ,
0, (i, j) 6∈ T

• Observed data is b = A(X) + ε for ε = A(ε) ∈ Rn×m.

• Rank proxy is the nuclear norm ‖X‖∗ =
∑min(n,m)
j=1 σj(X)

• The classic formulations that balance data fit with regularization are

minX∈Rn×m ‖X‖∗ + 1
σ‖A(X)− b‖2 (1)

minX∈Rn×m ‖A(X)− b‖2 s.t. ‖X‖∗ ≤ τ (2)
min

X∈Rn×m
‖X‖∗ s.t. ‖A(X)− b‖2 ≤ σ . (3)

are known as Tichonoff, Ivanov, and Morozov regularizations [2].

• The misfit-constraint variant (3) is most suited for situations where
a good estimate of the ‘noise floor’ σ is available.

Smoothness Constraints and Factorized Formulation
• Smoothness/continuity (a local property) between gridpoints is de-

sired in travel time tomography since geological structure of the
crust exhibits the traits of approximately homogeneous media.

– Implemented with penalty term 1
2γ‖L(X)‖22, where L the dis-

cretization of the Laplacian operator
– Smoothness and low-rank combine local and global information.

• An efficient alternative to the SVD needed in optimizing the convex
‖X‖∗ is the matrix factorization formulation [3]

– Explicitly decompose X = LRT , with L ∈ Rn×k, R ∈ Rm×k.
– From [4], the variational characterization

‖X‖∗ = inf
L,R:X=LRT

1

2
(‖L‖2F + ‖R‖2F )

lets us replace ‖X‖∗ by 1
2(‖L‖2F + ‖R‖2F ) where k � min(n,m)

– Memory requirements reduce frommn to kn+kmwith no SVDs.

• Our goal here is to solve the factorized Morozov formulation

min
L,R

1

2
‖L‖2F +

1

2
‖R‖2F +

1

2γ
‖L(LRT )‖22 s.t. ‖A(LRT )−b‖2 ≤ σ

(4)
with both local and global structure, and a misfit target σ.

Relaxed Low-Rank & Smooth Inversion
• Our novel method for Problem (4) is a relaxation by way of [5].

– We introduce an auxiliary variable W ≈ LRT :

min
L,R,W

1

2
‖L‖2F +

1

2
‖R‖2F +

1

2γ
‖L(W )‖22 +

1

2η
‖W − LRT‖2F

s.t. ‖A(W )− b‖2 ≤ σ. (5)

– Problem (5) is a relaxation for Problem (4), as W approximates
X = LRT , with ‖W − LRT‖ = O(η).

– This preserves features of (4) and is solved via block-coordinate
descent in Algorithm 1.

Algorithm 1 Block-Coordinate Descent for (5).
1: Input: W0, L0, R0
2: while not converged do
3: L+←

(
I + ηRTR

)−1
(ηWR)

4: R+← (ηWTL+)
(
I + ηLT+L+

)−1

5: W+←
arg min

W

1

2γ
‖L(W )‖22 +

1

2η
‖W − Lk+R

T
+‖2F

s.t. ‖A(W )− b‖2 ≤ σ

6: Output: W,L,R

– Step 6 is equivalent to the quadratic trust-region subproblem for
σ > 0, and can be solved using an efficient root-finding method.

– The σ = 0 case has a closed-form solution for W+.

FISTA & L-BFGS for Low-Rank & Smooth Inversion
• A simple convex formulation that uses smoothness, data misfit, and

a rank proxy (nuclear norm) is given by

min
X
‖A(X)− b‖2 +

1

2γ
‖L(X)‖2 + τ‖X‖∗. (6)

– Solved via Fast Iterative Shrinkage-Thresholding Algorithm [7].
– The step size α is the reciprocal of the largest singular value of

(A∗A + γ−1LTL), and Sατ is the soft-thresholding operator:

Sατ (Σ)ii = max(0,Σii − ατ ).

– Need gradient of smooth terms: A, L and their adjoints
– Need prox operator of ‖ · ‖∗, which requires thresholding on sin-

gular values computed via SVD.
– Prohibitively expensive as the dimensions of X grow.

• SVDs are avoided with variational factorization and L-BFGS [6]

min
L,R
‖A(LRT )− b‖2 +

1

2γ
‖L(LRT )‖2 +

τ

2
‖L‖2F +

τ

2
‖R‖2F . (7)

– Smooth with respect to the decision variables L and R

Tensor Formulation
• We matricize data by tensoring the receiver grid for each source

– Each receiver grid is a 2D, 95 kilometer mesh with 5 kilometer
spacing centered on the mountain.

– We focus on synthetic residuals Figure 1(b) of the nonlinear 3D
modeled data relative to the linear 1D model.

(a) Spatial locations of the sources (‘*’) around
Mt St Helens (triangle). The synthetic receiver
grid to the right of this figure is taken from the
source with the red ‘*’, seen just to the left of the
mountain.

(b) Example receiver grid for a single source.
This shows the residual difference between the
1D and 3D models. Note that this source has the
most data points out of all sources.

Figure 1: Source and receiver grid positions.

• Each source i at (Sxi, Syi) has an associated receiver grid of obser-
vations (Rx, Ry) ∈ (70, 165)× (70, 165)km2.
– Data is recorded in 4D tensor format with dimension

(Rx, Ry, Sx, Sy), where Rx = 20, Ry = 20, Sx = 8, Sy = 8

– Two possible tensor formulations: Figures 2(a) and 2(b).
– The second exhibits global low-rank structure.

• Sources are organized from high-energy to low-energy

(a) Binary subsampled matricization (Rx, Ry) ×
(SxSy); the missing data (zeros) go across the
rows: X ∈ R400×64.

(b) Binary subsampled matricization (Rx×Ry)×
(SxSy); missing entries (zeros) are are interwoven
throughout the matrix: X ∈ R160×160.

Figure 2: Two possible low-rank formulations.

Results
• Subsampling rate is 15%, with k = 40 (for the LRT formulation).

• The convergence criteria is set to 1e-10.

• We test the relaxation formulation against FISTA and L-BFGS for

both σ = 0 and σ =
√∑Tobs

i=1 0.52 ≈ 3.

• Results, with low-rank and smoothing alone, are presented in Fig-
ure 3 (for single sources only) and in Table 1.

(a) Low rank interpolation only. (b) Smoothing only.

(c) Variable relaxation (σ = 0). (d) Variable relaxation (σ ≈ 3).

(e) FISTA. (f) L-BFGS.

Figure 3: Residual results for the different algorithms on only one source.

Alg Time (s) RMS (obs) RMS (int)
Combined - VP (σ = 0) 23.16 0.09 0.109
Combined - VP (σ̄ = .05) 18.11 0.06 0.102
FISTA 21.02 0.09 0.120
L-BFGS 172.28 0.09 0.139
Smooth only 5.44 0.24 0.266
Low-rank only 2.31 0.08 0.213

Table 1: Different formulations for the same model residual dataset with 0% cross-
validation. Here we have the combined formulation interpolating on model residu-
als only. γ = 7.7e5, η = 1.0, % = 9.38. For l2, γ = 0, η = .5.

(a) Objective value decay (b) SVD decay for interpolated matrices.

Figure 4: Convergence information for different algorithms.

Conclusions & Future Directions
Our new variable relaxation algorithm can both solve
• Data misfit constraint with σ > 0

• Combine local (smoothness) & global (low-rank) information

• Converge quickly to local minima
Future directions are to interpolate with actual data as well as provide
a metric for estimating uncertainties, with the goal of providing new
data-stations to the PDE-constrained optimization routine.
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