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Introduction

e Travel-time tomography 1s used to determine the underlying struc-
ture of the earth in exploratory and global seismology by solving a
data fitting (inverse) problem.

e Data quality and availability 1s a key constraint, motivating denois-
ing and interpolation techniques prior to inversion.

* We analyze data obtained by the Imaging Magma Under St. He-
lens 1IMUSH) project, a multi-year effort to image and infer the
architecture of the greater Mount St. Helens magmatic system [1].

e IMUSH data collected:

— Active experiments initiate seismic tremors and record waves;
— Passive experiments record seismic waves from earthquakes.

e OQur contributions:

— A new formulation that allows a target data misfit, smoothness,
and low-rank regularization.

— An efficient algorithm for the new formulation competitive with
state-of-the-art for denoising and interpolation methods.

Mathematical Background

Formulations for Low-rank Interpolation
e Low-rank matrix completion estimates the missing data entries of
X € R™*" from observed entries.

eFor 7 C {1,...,n} x{1,...,m} the set of observed entries, we
can describe the sampling operator A : R — RX™M

X5, if(i,j) €T,

A= {o, (i, ))& T

* Observed data is b = A(X) + e for e = A(e) € R"*"™,

 Rank proxy is the nuclear norm || X ||« = Z?ﬂ:ﬁi(n’m) 0;(X)

 The classic formulations that balance data fit with regularization are

miny egren || X || + Z{IAX) = bll2 (1)
min y egexm || A(X) =blla sit. || X« < 7 (2)
min || X|[« st [|AX) —b|o < ol 3)

X eRrmxm

are known as Tichonoff, Ivanov, and Morozov regularizations [2].

e The misfit-constraint variant (3) 1s most suited for situations where
a good estimate of the ‘noise floor’ o 1s available.

Smoothness Constraints and Factorized Formulation

e Smoothness/continuity (a local property) between gridpoints 1s de-
sired 1n travel time tomography since geological structure of the
crust exhibits the traits of approximately homogeneous media.

— Implemented with penalty term %Hﬁ(){ )||%, where L the dis-
cretization of the Laplacian operator

— Smoothness and low-rank combine local and global information.

e An efficient alternative to the SVD needed in optimizing the convex
| X ||« is the matrix factorization formulation [3]

— Explicitly decompose X = LRL, with L € R"*k R ¢ R™*¥k,
— From [4], the variational characterization

| X ||« = inf

1 5 )
SULIF+ IR
L.R:X=LRT Q(H I+ IRl %)

lets us replace || X ||« by %(HLH% + HRHQF) where k < min(n, m)
— Memory requirements reduce from mn to kn+km withno SVDs.

e Our goal here 1s to solve the factorized Morozov formulation

T L T2 T
min S| LG5 | Rl 5 ICEEDIE st JALET) ~bly <o
(4)
with both local and global structure, and a misfit target o.
Relaxed Low-Rank & Smooth Inversion
e Our novel method for Problem (4) is a relaxation by way of [3].
— We introduce an auxiliary variable W' =~ LR':
win LI+ SIRI% + S |COV)IB + o-IW — LT3
L.RW?2 2 27y 2n
st |JAW) = b5 < . (5)

— Problem (5) is a relaxation for Problem (4), as W approximates
X = LR, with |[W — LRT|| = O(n).

— This preserves features of (4) and 1s solved via block-coordinate
descent in Algorithm 1.

Algorithm 1 Block-Coordinate Descent for (5).
1: Imput: Wy, Lg, R
2: while not converged do

1
S (1 + nRTR) (nWR)

T 7, \ !
s Ry (qoWTLy) (I+nL +L+)
1 1
in—| L2+ —=||W — L., RL|?
. W+%a1"gf%ﬂ27“ ( )”2+277H I |y
st JAW) —bljs < o

6: Output: W, L. R

— Step 6 1s equivalent to the quadratic trust-region subproblem for
o > 0, and can be solved using an efficient root-finding method.

—The o = 0 case has a closed-form solution for W ..

FISTA & L-BFGS for Low-Rank & Smooth Inversion

* A simple convex formulation that uses smoothness, data misfit, and
a rank proxy (nuclear norm) is given by

min | A(X) —b||2+%\IE(X)|I2+THXI|*- (6)

— Solved via Fast Iterative Shrinkage-Thresholding Algorithm [7].

— The step size « 1s the reciprocal of the largest singular value of
(A*A + 7_1£T£), and S+ 1s the soft-thresholding operator:

Sar(2); = max(0, X, — aT).

— Need gradient of smooth terms: A, £ and their adjoints

— Need prox operator of || - ||«, which requires thresholding on sin-
gular values computed via SVD.

— Prohibitively expensive as the dimensions of X grow.
e SVDs are avoided with variational factorization and L-BFGS [6]
1 T T
in [|A(LRT) — b||* + —||C(LRD|)? + = || L||% + =||R||%. (7
min |A(LRT) =8P+ LLEDIP + SILIG + SR )

— Smooth with respect to the decision variables L and R

Tensor Formulation

* We matricize data by tensoring the receiver grid for each source

— Each receiver grid is a 2D, 95 kilometer mesh with 5 kilometer
spacing centered on the mountain.

— We focus on synthetic residuals Figure 1(b) of the nonlinear 3D
modeled data relative to the linear 1D model.
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(a) Spatial locations of the sources (‘*’) around (b) Example receiver grid for a single source.
Mt St Helens (triangle). The synthetic receiver This shows the residual difference between the
grid to the right of this figure is taken from the 1D and 3D models. Note that this source has the
source with the red ‘*’, seen just to the left of the most data points out of all sources.

mountain.

Figure 1: Source and receiver grid positions.

» Each source 7 at (S, Sy,) has an associated receiver grid of obser-
vations (R, Ry) € (70,165) x (70, 165)km?.
—Data 1s recorded in 4D tensor format with dimension
(Rz, Ry, S, Sy), where Ry = 20, R, =20, S; =8,5, =8
— Two possible tensor formulations: Figures 2(a) and 2(b).
— The second exhibits global low-rank structure.

e Sources are organized from high-energy to low-energy
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(a) Binary subsampled matricization (R,, R,) x (b) Binary subsampled matricization (R, X R,) X
(S.S5y); the missing data (zeros) go across the (5,.5,); missing entries (zeros) are are interwoven
rows: X € R00x04, throughout the matrix: X € R100x1060,

Figure 2: Two possible low-rank formulations.

Results

e Subsampling rate is 15%, with k£ = 40 (for the LR! formulation).

e The convergence criteria 1s set to 1e-10.

* We test the relaxation formulation against FISTA and L-BFGS for
botho =0and o = \/Z;@f 0.52 ~ 3.

e Results, with low-rank and smoothing alone, are presented in Fig-
ure 3 (for single sources only) and in Table 1.
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Figure 3: Residual results for the different algorithms on only one source.

Alg Time (s) RMS (obs) RMS (int)
Combined - VP (6 =0) [23.16 |0.09 0.109
Combined - VP (7 = .05) 18.11 0.06 0.102
FISTA 21.02  10.09 0.120
L-BFGS 172.28 |0.09 0.139
Smooth only 5.44 0.24 0.266
Low-rank only 2.31 0.08 0.213

Table 1: Different formulations for the same model residual dataset with 0% cross-
validation. Here we have the combined formulation interpolating on model residu-
als only. v = 7.7e5, n = 1.0, % = 9.38. For Iy, v = 0, n = .5.
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Figure 4: Convergence information for different algorithms.

Conclusions & Future Directions

Our new variable relaxation algorithm can both solve
e Data misfit constraint with o > 0
e Combine local (smoothness) & global (low-rank) information
e Converge quickly to local minima

Future directions are to interpolate with actual data as well as provide
a metric for estimating uncertainties, with the goal of providing new
data-stations to the PDE-constrained optimization routine.
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