
Relaxation algorithms for matrix completion, with

applications to seismic travel-time data

interpolation.

Robert Baraldi1, Carl Ulberg2, Rajiv Kumar3, Kenneth

Creager2 and Aleksandr Aravkin1

1Department of Applied Mathematics, University of Washington
2Department of Earth and Space Sciences, University of Washington
3School of Earth and Atmospheric Sciences, Georgia Institute of Technology

Abstract. Travel time tomography is used to infer the underlying three-dimensional

wavespeed structure of the Earth by fitting seismic travel time data collected at surface

stations. Data interpolation and denoising techniques are important pre-processing

steps that use prior knowledge about the data, including parsimony in the frequency

and wavelet domains, low-rank structure of matricizations, and local smoothness.

We show how local smoothness structure can be combined with low rank constraints

using level-set optimization formulations, and develop a new relaxation algorithm that

can efficiently solve these joint problems. In the seismology setting, we use the approach

to interpolate missing stations and de-noise observed stations. The new approach is

competitive with alternative algorithms, and offers new functionality to interpolate

observed data using both smoothness and low rank structure in the presence of data

fitting constraints.

Submitted to: Inverse Problems

1. Introduction

Travel-time tomography is used to determine the underlying structure of the earth

and how seismic waves propagate through that structure. This weakly nonlinear

problem is formulated as a data-fitting inverse problem and solved using iterative

optimization techniques. Data quality and availability are key constraints and can

drastically influence the merit of the results [21, 15, 16]. Hence, researchers often use

prior information to denoise and interpolate the data prior to inversion. Parsimonious

representations [6, 22] of the data in transform domains such as Fourier [23] and

Curvelet [9] have been used in exploration seismology [8, 13], along with low-rank

representations [1, 7].

We focus on regional seismology — in particular, we want to analyze data obtained

by the Imaging Magma Under St. Helens (iMUSH) project, a multi-year effort to image

and infer the architecture of the greater Mount St. Helens, WA, magmatic system
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[27, 12]. The iMUSH project uses a variety of geophysical and petrological methods,

including active source, local earthquake, and ambient noise seismic tomography to

study the most active volcano in the Cascades arc. For the passive source seismic

portion of the iMUSH project, 70 broadband seismometers were deployed from 2014

to 2016 within a 100km diameter circle around the mountain; these have an average

station spacing of 10km, and are supplemented by permanent stations maintained by

the Pacific Northwest Seismic Network (PNSN) and a temporary array of 20 broadband

seismometers deployed by AltaRock Energy in June to November of 2016.

The data collected from this experiment comprises P-wave travel times from 23

active borehole explosions [11] and over 400 local earthquakes [27] recorded at the

iMUSH broadband array. Collected data has a range of fidelities, and different subsets

inform different parameters for 3D P -wave velocities and hence geometries of the

structure underlying Mount St. Helens. Travel times are inverted to obtain 3D seismic

velocity models and image complex subsurface structures, including low velocity zones.

The efficacy of the approach depends on the quality of the data, which is affected by

noise from roads, streams, ocean waves, and wind. The signal to noise ratio (SNR) of

the data depends on the source size, distance from the seismometer, and attenuation

structure of the earth. Data is scarce because many landscape features are impassable;

typical station spacing is 10km. Arrival times are chosen by operators, who assign

uncertainties for particular observations based on confidence in seismic readings. Low-

magnitude events in particular are often difficult to distinguish from noise.

Our goal here is to increase the raypath coverage for use in earthquake tomography

by simulating seismometer locations and observations by interpolating noisy data. This

is particularly useful for areas within the study region that did not have seismometers

installed or which had seismometers out of service for extended periods of time. Since

we know the data is corrupted by uncertainty and noise, the problem is a good match for

level-set optimization formulations [2] that minimize a regularizer subject to a prescribed

level of data fit. We propose a relaxation formulation that allows misfit constraints while

(1) penalizing rank of a tessellation that captures redundancy of features across sources,

and (2) enforcing smooth features consistent with the underlying physical model. We

develop an efficient block-coordinate algorithm for this formulation, and compare the

approach with a variety of competing formulations and algorithms.

The paper proceeds as follows. In Section 2 we review relevant formulations and

algorithms for interpolation and denoising. In Section 3, we develop the extended model

formulation and the relaxation method to solve it. Section 4 describes the data used and

how it fits into a low-rank interpolation scheme. In Section 5 we evaluate the approach

and compare it against alternatives for denoising and interpolating Mount St. Helens

data.
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2. Preliminaries

In this section, we set up the notation, review prior information used in interpolation

and denoising, and discuss different types of standard optimization formulations needed

to implement such approaches.

2.1. Notation

We use the following notation conventions in the paper. Lowercase variables (x) denote

vectors, while uppercase variables (X) represent matrices. Calligraphic uppercase letters

(A) are used for operators or functionals. The terms (Rx, Ry) represent a receiver

coordinate grid. The variables nd, nRx , nRy , ns represent the number of observed data

points, the number of points in the x-direction of the receiver grid, the number of points

in the y-direction of the receiver grid, and the number of sources. The variable Ω is

used to represent the entire 4-dimensional source/receiver space and generically the

interpolation space.

2.2. Formulations for Low-rank Interpolation

The goal of low-rank matrix completion is to accurately estimate the missing data entries

of a matrix X ∈ Rm×n from observed entries. Low-rank structure is often inferred if

completed X has few non-zero singular values and experiences entry repetition. The

observed entries are given by the vector b ∈ Rnd . We let A : Rn×m → Rnd be the

restriction/interpolation operator that maps elements from the regular grid X to the

observed values b, which can be written as b = A(X) + ε for ε ∈ Rnd . Here, ε represents

the data corruption of observed entries via some noise distribution. In formulating the

problem, the nuclear norm

‖X‖∗ =

min(n,m)∑
j=1

σ̂j(X),

with σ̂j the singular values of X, is used as a proxy for rank. The classic formulations

that balance data fit with regularization are

min
X∈Rn×m

‖X‖∗ +
1

σ
‖A(X)− b‖2 (1)

min
X∈Rn×m

‖A(X)− b‖2 s.t. ‖X‖∗ ≤ τ (2)

min
X∈Rn×m

‖X‖∗ s.t. ‖A(X)− b‖2 ≤ σ . (3)

These formulations are known as Tichonoff, Ivanov, and Morozov regularization [20],

respectively. The misfit-constraint Morozov variant (3) is best suited for situations

where a good estimate of the uncertainty, σ, is available. To simplify exposition, we will

focus on Morozov-type formulations.
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2.3. Smoothness constraints

In travel time tomography, smoothness and continuity between gridpoints is a reasonable

prior, since the geological structure of the crust exhibits the traits of approximately

homogeneous media. Smoothness is enforced by introducing a penalty term ‖L(X)‖22,
with L the discretization of the Laplacian operator. In 1D, it is a tridiagonal difference

matrix operating on the vectorized X; in 2D, it has four off-diagonal elements.

Enforcing smoothness and low-rank structure combines local and global

information. A Morozov formulation, with γ balancing the regularizers, is given by

min
X
‖X‖∗ +

1

2γ
‖L(X)‖22 s.t. ‖A(X)− b‖2 ≤ σ. (4)

2.4. Factorized Formulations

Theoretical properties of matrix completion via nuclear-norm minimization have been

extensively studied [4, 5]. The theoretical appeal of convex formulations is tempered by

computational considerations — algorithms that optimize ‖X‖∗ require a full matrix

decision variable, and full or partial singular value decompositions (SVDs) at each

iteration. An efficient alternative is to use matrix factorization formulations [1], writing

X = LRT , with L ∈ Rn×k, R ∈ Rm×k. From [22], we have the characterization

‖X‖∗ = inf
L,R:X=LRT

1

2
(‖L‖2F + ‖R‖2F ),

which allows us to replace ‖X‖∗ in any formulation by 1
2
(‖L‖2F + ‖R‖2F ) for any

factorization X = LRT . For example, the three formulations (1)-(3) become

min
L∈Rn×k, R∈Rm×k

1

2
‖L‖2F +

1

2
‖R‖2F +

1

σ
‖A(LRT )− b‖2 (5)

min
L∈Rn×k, R∈Rm×k

‖A(LRT )− b‖2 s.t. ‖L‖2F + ‖R‖2F ≤ 2τ (6)

min
L∈Rn×k, R∈Rm×k

1

2
‖L‖2F +

1

2
‖R‖2F s.t. ‖A(LRT )− b‖2 ≤ σ , (7)

where k � min(n,m), and the memory requirements are reduced from mn to k(n+m).

No SVDs are required; formulation (5) is smooth, formulation (6) requires simple

projections onto the Frobenius-norm ball, and formulation (7) can be solved using (6)

via root-finding as described by [1].

Our primary technical goal here is to solve the factorized Morozov formulation

corresponding to (4):

min
L,R

1

2
‖L‖2F +

1

2
‖R‖2F +

1

2γ
‖L(LRT )‖22 s.t. ‖A(LRT )− b‖2 ≤ σ. (8)

In particular, this formulation incorporates both local and global structure, and

gives a misfit target σ. It requires a new algorithm, since (8) cannot be solved by

the level-set approach of [1]. The only available alternative is to use Tichonoff-type

formulations (see Section 3.1). Our main technical contribution is a nonconvex splitting

algorithm for problem (8), developed in the next section.
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3. Relaxed Joint Inversion

The main challenge of the factorized Morozov formulation (8) is the data-misfit

constraint. To solve the problem, we propose a relaxation following the ideas of [29]. In

particular, we introduce an auxiliary variable W ≈ LRT :

min
L,R,W

1

2
‖L‖2F +

1

2
‖R‖2F +

1

2γ
‖L(W )‖22 +

1

2η
‖W −LRT‖2F s.t. ‖A(W )− b‖2 ≤ σ. (9)

Problem (9) is a relaxation for problem (8), since W approximates X = LRT ; in

particular ‖W −LRT‖ = O(η). The salient modeling features of (8) are still preserved.

We can now design a simple block-coordinate descent algorithm by iteratively optimizing

in each of (L,R,W ), detailed in Algorithm 1.

Algorithm 1 Block-Coordinate Descent for (9).

1: Input: W0, L0, R0

2: Initialize: i = 0.

3: while not converged do

4: Li+1 ←
(
I + ηRT

i Ri

)−1
(ηRT

i W
T
i ) . Solves 1

2
‖L‖2F + 1

2η
‖Wi − LRTi ‖2F

5: Ri+1 ← (ηW T
i Li+1)

(
I + ηLTi+1Li+1

)−1
. Solves 1

2
‖R‖2F + 1

2η
‖Wi − Li+1R

T ‖2F

6: Wi+1 ← arg minW
1
2γ
‖L(W )‖22 + 1

2η
‖W − Li+1R

T
i+1‖2F s.t. ‖A(W )− b‖2 ≤ σ

7: i ← i+ 1

8: Output: Wi, Li, Ri

Steps 4 and 5 of Algorithm 1 are simple least squares updates; each minimizes (9)

in L and R respectively, with the remaining variables held fixed. Algorithm 1 converges

to a stationary point of (9) by [26, Theorem 4.1]. In particular, f(L,R,W ) has a unique

minimum in each coordinate block with the remaining blocks held fixed, which satisfies

condition (c) of the theorem. The uniqueness of the minima are clear from the closed

form solutions in steps 4 and 5, and from the strong convexity of the W subproblem in

step 6. This step 6 is solved using an efficient root-finding method. First, we describe

the equivalent penalized problem with penalty parameter λ, given by

w(λ) := arg min
w

1

2γ
‖L∇w‖22 +

1

2η
‖w − di+1‖2F +

λ

2
‖Aw − b‖2, (10)

where w = vec(W ), L∇ is a sparse matrix that encodes the action of the Laplacian on

w, A is a linear operator that sends w to b, and di+1 = vec(Li+1R
T
i+1). The root finding

method obtains the smallest value of λ satisfying ‖Aw(λ)− b‖2 ≤ σ.

Taking the gradient of the objective defining w(λ) in (10) and setting it equal to 0,

we find an explicit formula

w(λ) =

(
1

γ
(LT∇L∇) +

1

η
I + λATA

)−1(
1

η
di+1 + λAT b

)
. (11)
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We need only find the smallest λ ≥ 0 so that ‖Aw(λ)− b‖2 = σ. The special case λ = 0

occurs when the constraint is satisfied at the least squares solution w(0) in (11):∥∥∥∥∥A
(

1

γ
(LT∇L∇) +

1

η
I

)−1(
1

η
di+1

)
− b

∥∥∥∥∥ ≤ σ,

In all other cases, we have

f(λ) := σ − ‖Aw(λ)− b‖2, f ′(λ) = −〈A
TAw(λ)− b,∇λw(λ)〉.
‖Aw(λ)− b‖2

We compute the quantity ∇λw(λ) required to evaluate f ′(λ) using the complex step

method [18], instead of differentiating (11) directly. The root-finding update is given by

λ+ := λ− f(λ)

f ′(λ).

The expensive step (11) is implemented using Cholesky factors of the sparse matrix(
1
γ
(LT∇L∇) + 1

η
I + λATA

)
. This system only changes when η is updated. Updating

W in Algorithm 1 has a relatively high computational cost. Table 1 gives a detailed

arithmetic complexity analysis, with L ∈ Rn×k, R ∈ Rm×k, W ∈ Rn×m. For our data,

n = m and W is square.

Table 1. Numerical complexity for Algorithm 1. Key steps are Cholesky factorization

(CF), back-substitution (BS), and root finding.

Line O(·) Explanation

Line 4 k3

3
+ 2k2m CF of k × k matrix with BS of k ×m matrix

Line 5 k3

3
+ 2k2n CF of k × k matrix with BS of k × n matrix

Line 6 σ = 0 (nm)3

3
+ 2(nm)2 CF of nm× nm matrix and BS

Line 6 σ > 0 (kr(2kp) + 1 + kl) (nm)2 Rootfinding algorithm with kl, kp, kr ≤ 100.

Line 6 of Algorithm 1 requires a root-finding algorithm or another Cholesky

decomposition, depending on the value selected for σ. If σ = 0, then we have the

Cholesky decomposition of (
1

γ
(LT∇L∇) +

1

η
I + λATA

)
from Equation 11 which is order (nm)3

3
+ 2(nm)2; the update is required when η or

λ change. If σ > 0, then we implement the root finding algorithm with inputs

LT∇L∇ ∈ Rnm×nm, L∇A
T b = q ∈ Rnm, and A ∈ Rnd×nm. This requires three steps.

The first is matrix-vector multiply LT∇q. Next, we apply LSQR iterations of order

O (nm)2 where kl ≤ 100 is the number of LSQR iterations. Finally, we use kr iterations

of PCG for kp ≤ 100 iterations. Here, the major cost is O (nm)2. Hence, in the total

root finding algorithm with kr iterations, we have one mat-vec, kl LSQR, and kp PCG

iterations, with kl, kp, kr ≤ 100.
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3.1. Alternative Approaches for Low-Rank & Smooth Inversion

There are alternative ways to model problem (9). We consider two formulations and

algorithms to compare with Algorithm (1).

Nuclear-norm formulation using FISTA. A simple convex formulation that uses

smoothness, data misfit, and a rank proxy (nuclear norm) is given by

min
X

λ

2
‖A(X)− b‖2 +

1

2γ
‖L(X)‖2 + ‖X‖∗ (12)

Formulation (12) is the sum of a smooth and a simple function, and can be solved using

projected gradient or Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [3],

detailed in Algorithm 2. This class of algorithms can be viewed as an extension of

the classical gradient algorithm and is attractive due to its simplicity. The step size α

is the reciprocal of the largest singular value of (λA∗A+ γ−1L∗L), and the operator Sα
is the soft-thresholding operator:

Sα(Σ)jj = max(0,Σjj − α).

Algorithm 2 FISTA for (12).

1: Input: X0 = X−1 ∈ Rm×n, t0 = t−1 = 1

2: Initialize: i = 0

3: while not converged do

4: Yi ← Xi + ti−1−1
ti

(Xi −Xi−1)

5: Gi ← Yi − α ((λA∗A+ γ−1L∗L)vec(Yi)− λA∗b)
6: U,Σ, V T ← svd(Gi)

7: Xi+1 ← USα(Σ)V T

8: ti+1 ←
1+
√

1+4(ti)2

2

9: i ← i+ 1

10: Output: Xi

Algorithm 2 uses gradients of the smooth terms, which requires appying A, L and

their adjoints, and the prox operator of ‖ · ‖∗, which requires thresholding on singular

values computed via SVD (steps 6,7). The most expensive computational step here is

the svd, which requires O(2mn2 + 2n3) arithmetic operations [25]. These steps become

prohibitively expensive as the dimensions of X grow.

Smooth Factorized Formulation with L-BFGS. To avoid the SVD steps of Algorithm 2,

we use the factorization strategy described in Section 2.4:

min
L,R

λ

2
‖A(LRT )− b‖2 +

1

2γ
‖L(LRT )‖2 +

1

2
‖L‖2F +

1

2
‖R‖2F . (13)
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Formulation (13) is smooth with respect to the decision variables L and R, and at larger

scales, the limited memory BFGS (L-BFGS) [19] algorithm is a reasonable choice. The

number of operations per iteration is O(kLnm), with kL the L-BFGS history size.

Convergence Complexity An apples to apples complexity analysis is difficult for the

algorithms presented. We have no complexity result for Algorithm 1; only a convergence

guarantee (eventual stationarity of iterates). The accelerated proximal gradient method

used for matrix completion in [24] has a rate of convergence O (1/
√
ε) or O

(√
Lf
k

)
,

where Lf is the Lipschitz constant of the least squares component of formulation 12.

However, this paper addresses the exact problem, while FISTA and L-BFGS are solving

relaxations. In the context of our application, Algorithm 1 converges in an order of

magnitude fewer iterations to a higher root-mean-squared error (for both observed and

unobserved). For example, this is 2000 iterations of FISTA relative to our 200 iterations

(in Algorithm 1, both σ > 0 and σ = 0), see Section 5.

In the next section, we describe the travel-time interpolation problem for regional

seismology, evaluate low rank and smooth regularization, and compare the performance

of Algorithm 1 for (9) to those of FISTA (Algorithm 2) on (12) and L-BFGS on (13),

in terms of computational efficiency and quality of reconstruction.

4. Interpolation of synthetic travel time iMUSH data

This experiment interpolates synthetic travel time residuals, which are calculated with

respect to travel times predicted by a 1D velocity model. Travel times vary on the

order of tens of seconds, while travel time residuals are generally between -1 and 1

seconds. We obtain synthetic travel times by using the forward modeling portion of the

struct3DP code, which uses a finite difference 3D eikonal equation solver [28, 10]. These

travel times are calculated for the best-fit 3D model from the iMUSH local earthquake

tomography and compared to travel times through the PNSN S4 [17] 1D velocity model

to obtain the synthetic residual. Similarly, for observed travel times, we subtract the

travel time predicted through the 1D model from the observed travel time to obtain the

observed residual.

Here, we define the experimental data. While raw iMUSH/PNSN data exists

at station locations around the mountain (see blue dots in Figure 1(b)), these

iMUSH/PNSN stations are not gridded. To deal with this problem, we include an

interpolation operator into the standard linear map A, as discussed in detail in Section

6. In the following synthetic experiments, we solve a forward problem with the 3D

eikonal equation solver and use the best-fit 3D model to generate synthetic results for

uniformly gridded stations in a square of 70km to 165km (with origin being at latitute

45.2, longitude -123.7). For the rest of this paper, we refer to the travel-time residuals

between these synthetic travel times and those predicted by the 1D PNSN S4 model
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as the true data, or Xtrue. To generate observations for the interpolation schemes,

we subsample this data down to 15% of total grid coverage over all sources by picking

synthetic gridded stations near raw iMUSH/PNSN stations. This is a subset of synthetic

stations meant to represent the distribution of the real-world stations that recorded

the event. This subsampled data is then corrupted with noise. For each station, we

generate a standard deviation parameter from the uniform distribution (0.03-0.15)(s);

this captures each synthetic station’s inherent uncertainty. The deviation range is based

on raw iMUSH uncertainties recorded over the two year period. Then, for each station’s

data, we add zero mean random gaussian noise generated using that station’s deviation

parameter to create the observed data, or Xobs. Unobserved entries of Xobs are zero,

while observed entries are given by A(Xobs) = b. The operator A(·) : Rn×m → Rnd

takes the tensor we wish to interpolate, X, and selects the observed entries to return a

vector the same size as b ∈ Rnd . This is represented by a binary matrix A ∈ Rnd×nm

that selects the observed entries out of a vectorized X.

4.1. Description of source tensor construction

In order to apply the methods of Section 3, we have to specify a matricization of the

data. The matricization we use is derived from the receiver grid, which is represented as

a 95km-wide mesh with 5 kilometer spacing centered near Mount St. Helens. Again, the

station grid is centered near the mountain and roughly coincides with the 70 stations

deployed for 2 years. Each entry in the matrix represents a point on this uniform receiver

grid. Missing entries are designated by zeros, while observed entries are represented with

the travel time residuals relative to the 1D model. Our experiments in this paper focus

mainly on synthetic residuals of the nonlinear 3D modeled data relative to the 1D model,

which provide a ‘ground truth’ dataset we use to evaluate and compare interpolation

techniques.

Each source represents a wave moving through the same media. The underlying

physical model suggests enforcing smoothness between station gridpoints. We further

improve interpolation with low-rank methods by finding a tessellation of source-receiver

grid matrices in which full data exhibits fast decay of singular values, while subsampled

data does not. Intuitively, such a tessellation reflects the redundancy of features across

sources. Our combined goal is to interpolate X from a subset of observations by

penalizing rank across sources, and nonsmooth local features. We parameterize the

time picks into 4-tensors Ωijkl where (i, j) are the receiver index pairs and k, l are the

source index pairs. The observed residual data is recorded in this 4D tensor format with

dimension (i, j, k, l) ∈ (1 . . . nRx , 1 . . . nRy , 1 . . .
√
ns, 1 . . .

√
ns), where nRx = 20, nRy =

20, ns = 64 for the experiments. Each source (k, l) has an associated receiver grid

of observations (Rx, Ry) ∈ (70, 165km) × (70, 165km) wherein each receiver coordinate

pair (i, j) lies. Each receiver axis lies between 70km and 165km with 5km spacing. The

observation grid was chosen to lie close to the mountain and to contain a relatively

large number of sensors (see Figure 1(b)). Initially, we observed 64 sources, where each
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(a) Spatial locations of the sources (‘*’)

around Mount St. Helens (∆). The box

represents the edges of the uniform 20×20

station grid. The grid panel (c) is taken

from the source marked with a red ‘*’.

(b) Receiver grid for a single source with

the most datapoints. Black ‘*’ represent

synthetic stations on a grid, while blue ‘.’

represent iMUSH/PNSN stations off-grid.

(c) True residual data (in seconds) for the

receiver grid in panel (b).

Figure 1. Data information for synthetic test.

source recorded at most 80 receivers (out of the potential 400). Source locations for

the 64 sources are shown in Figure 1(a), and a sample receiver grid for a particular

source is given in Figure 1(b) and Figure 1(c) is the true data for that grid. Since

observed residual data is a tensor, we have to choose a matricization to exploit the

induced low-rank structure.

We consider two such matricizations: 1) X(nRx−1)i+j,(
√
ns−1)k+l = Ωijkl, where we

group receivers along columns and sources along rows, and 2) Xi+(nRx−1)k,j+(nRy−1)l =

Ωijkl, where each receiver grid is block-inserted into the underlying matrix. On a 20x20

receiver grid with 64 sources, the first matricization X ∈ R400×64, depicted in Figure

2(a), is obtained by letting Ωij11 ∈ RRx,Ry = R400×1 be the vectorized receiver grid for

single source k = l = 1; the sources are then arranged column-wise for k, l = 1, . . . ,
√
ns.

The second matricization X ∈ R160×160, depicted in Figure 2(b), is obtained by letting

Ωij11 ∈ RRx×Ry = R20×20 be the nested receiver grid for single source k = l = 1. The

sources are then nested together for k, l = 1, . . . ,
√
ns.
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(a) Subsampled matricization

X(nRx−1)i+j,(
√
ns−1)k+l; the missing

data (zeros) go across the rows.

(b) Subsampled matricization

Xi+(nRx−1)k,j+(nRy−1)l; missing entries

(zeros) are are interwoven throughout the

matrix.

Figure 2. Different tensor formulations for low-rank interpolation.

The subsampling scheme is crucial for the approach. The ideal situation is for the

subsampled data to have high rank (slow decay of singular values), while the full data

has low rank (fast decay of singular values). Then, it is possible to recover the full

volume by penalizing rank while matching observed data. R2.10 For the low-rank

penalty to be effective, the subsampled data must have high rank; otherwise, the low-

rank penalty will have no effect on the problem. That is, the matricized Xobs (plotted

in Figure 2(b)) should have a higher rank than the fully sampled matricized volume

we want to recover. The difference between tensor respresentations in Figure 2 is that

the columns of X(nRx−1)i+j,(
√
ns−1)k+l (Figure 2(a)) have high mutual coherence, while

the columns of Xi+(nRx−1)k,j+(nRy−1)l (Figure 2(b)) have low mutual coherence. The

coherence or mutual coherence of a matrix is defined as the maximum absolute value

of the cross-correlations between the columns of that matrix. According to Theorem

1.3 in [5], low coherence implies that few entries of X are required for recovery of the

full matrix. Hence, we require that Xobs have high rank, and the tensor representation

plays an important role in the success of the algorthim. The first matricization does

not satisfy this simple requirement: the subsampled matrix is itself low-rank and has

rows and columns made up of zeros. Therefore we use the second matricization with

tessellated sources, which indeed satisfies the requirement, see Figure 4.1.
In both matricizations, the sources are organized from largest in magnitude to

smallest in magnitude. In Formulation 1, the sources are arranged such that the source
with the greatest absolute residual values is in the first column and the least absolute
residuals is in the last. In Formulation 2, the source with the greatest energy is in the
top left, and the least in the bottom right; the energy then decays by source column
(i.e. the next highest energy is the source immediately below in the row of sources).
This was done to promote an even slower decrease in singular values for the observed
matrix, and makes the low-rank approach far more effective.
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Figure 3. Singular value decay for matricization formulations 1 and 2 of the

interpolation tensor.

5. Application to Synthetic Data

First, we evaluate the accuracy of using both smoothness and low-rank, compared to

using either property alone. Then, we compare the speed and robustness of the new

algorithm with competitors: FISTA (Algorithm 2, Equation 12) and L-BFGS (Equation

13). All tests use a tensored grid with the number of sources ns = 64, and grid sizes

nRx , nRy = 20 for Rx, Ry ∈ (70, 165) evenly spaced at 5km. For all plots, north is

up. The subsampling rate for every test is approximatestely 15%. We set the value

k (for the LRT formulation) to be 40 for all algorithms. The value of k was chosen

to be significantly smaller than the total number of sources; it is 1/4th of the total

number of columns in our experiment. A systemic method for chosing k is currently a

driving question within the community; in practice, one can choose a larger k, if there

is sufficient computational budget, since penalizing ‖L‖2F + ‖R‖2F controls the nuclear

norm (and hence rank) through the relationship

‖LR‖∗ ≤
1

2
‖L‖2F +

1

2
‖R‖2F .

These ideas are discussed at length in [1], where numerical tests confirm that driving k

to be higher does not result in overfitting the data.

First, we compare the ‘low-rank only’ formulation (4) with the ‘smoothing only’

formulation

min
W
‖L(W )‖22 s.t. ‖A(W )− b‖2 ≤ σ. (14)

For this test, we use the inequality constraint ‖A(W )− b‖2 ≤ σ; the equality constraint
(A(W ) = b) is infeasible. This requires a root-finding algorithm nearly identical to
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the W -update of Algorithm 1 in Section 3. For the low-rank formulation, we use the
matricization in Figure 2(b). The convergence criteria (l2-norm of minimized variable(s)
iterate difference) for all algorithms is 10−10. All model hyper-parameters are shown in
Table 2.

Table 2. Model hyper-parameters. We set γ = 6.45× 10−7 for all algorithms except

low-rank and smoothing only (where it is not used). The smoothing only formulation

requires a root-finding problem for the inequality constraint, and has no Max Iteration

value corresponding to block-coordinate-descent portion. For FISTA, the step-size

α = ‖L‖−22 , the reciprocal of the largest singular value of L. In the joint formulation,

we update η every 30 iterations; in the low-rank only, we update every 100 iterations.
Alg λ η ηf Max Iterations σ

Combined - VR Exact 0.0111 0.5 4.17 90 0

Combined - VR Noise 0.0111 0.5 4.17 90 3.719

FISTA 2.2222× 10−4 — — 1500 —

L-BFGS 1.1111× 10−4 — — 1500 —

Smooth only — — — — 3.719

Low-rank only — 1.0 4.17 500 3.719

For the proposed relaxation algorithm, η is updated by η+ = ηfη for ηf =
∑
j σ̂j

k

at every 30th iteration. Here, σ̂j are the singular values of the pre-interpolated matrix,

which is the observed data on the grid and zeros where no data was observed. For

low-rank only (with the l2-norm), we update η ever 100 iterations. Increasing η can

accelerate the algorithm [29]. We control η starting with a value that allows a large

difference between W and LRT , and then drive the value down such that W ≈ LRT .

Recall that W captures smoothness and LRT the low-rank properties of sources; the

scheme drives them closer so that the final solution is both smooth and close to low

rank. While Algorithm 1 is guaranteed to converge with any η value [29], the η path

affects the behavior of the overall algorithm. In this work, η was updated when the

feasibility measure and ‖W − LRT‖2 stopped changing, i.e. when each problem was

solved. A systematic approach for continuation is part of ongoing work.

The interpolated results for these two schemes and the true data are shown in

Figure 4 with root-mean-squared (RMS) errors for both observed and interpolated data

listed in Table 3. The RMS error is calculated with respect to true data, and is split

into two categories: RMS for true data at locations that were observed (designated

A(Xtrue) or obs), and RMS for true data for locations that were not observed (given by

the complement Ac(Xtrue) or int). Recall that in this context, true data refers to the

residuals of the 3D model compared to the PNSN S4 1D velocity model uncorrupted by

noise. The RMS is not weighted by uncertainties. While the low-rank only interpolation

can accurately capture the observed data, it fails to reproduce the missing data.

In Figure 4(a), the low-rank interpolation produces mono-color bands across the

tensor: when entries for a receiver coordinate are missing in every source, the low-rank

mechanism places zeros in the entire row or column. Likewise, if there is a single ob-

served receiver in an entire row or column of the matrix, that value is propagated through

every other entry in that row or column. The sparsity of the data impairs low-rank only
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interpolation, which gives good results at sampling ratio of 70% and above (these results

not shown), but is less effective in our context. Smoothing alone, shown in Figure 4(b)

can capture major model dynamics, yet overestimates observed data worse than other

methods and does not overall match data as well as other methods (see Table 3). While

the scale on Figure 4(b) breaches is capped at 1.2 (s), smoothing only actually has

values larger than 1.5 (s) in the bright yellow section, and the observed differences are

also larger (Figure 8(f)). It also makes sense that smoothing alone would out-perform

low-rank alone, since the underlying model used to generate data is inherently smooth.

Some of the overall residual patterns are matched (larger residual energies are correctly

placed around larger observed residuals), but the magnitude of the residuals is incorrect

across all sources. A blown-up version of Figure 4 for the source with the highest num-

ber of observed data ponts is shown in Figure 5. Both low-rank only and smoothing

only formulations are inadequate for our application, especially with sparse data.

(a) Low-rank Equation (8). (b) Smoothing Equation (14).

(c) Observed model residuals, Xobs. (d) True model residuals, Xtrue.

Figure 4. Full tensor residuals (s) results for Low-rank and smoothing only.
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(a) Low-rank Equation (8). (b) Smoothing Equation (14).

(c) Observed model residuals. (d) True model residuals.

Figure 5. Residual results (in seconds) for a single source with Low-rank and

smoothing only.

In contrast, we show in Figure 6 that using both types local and global information
can meaningfully interpolate the data. This can be done with the new joint formulation
as well as unconstrained formulations that use FISTA and L-BFGS algorithms; so we
also test the efficacy of the new approach against these two competitors. We consider
two different choices of our variable relaxation algorithm: σ = 0 and σ > 0. In the
latter case, we assume that we do not know the true data misfit, and use available
uncertainties to set σ =

√∑n
i=1 0.062 ≈ 3.72(s) for n being the size of b. The true data

misfit is actually ‖b − A(Xtrue)‖2 = σtrue = 5.85(s) where A(Xobs) = b is our observed
data. The results for tensored and single-source matrix-completion are shown in Figures
6 and 7, and are summarized in Table 3. The new approach (in bold) achieves better
results than competing methods in similar amounts of compute time. Setting σ > 0 in
the variable relaxation scheme produces smaller RMS values, and in particular recovers
missing data with higher accuracy.
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Table 3. Different formulations for model residuals with sampling rate of 15%.

Terminal feasibility is ‖A(X) − b‖2 − σ at the algorithm’s termination (which would

mean l2-norm data misfit where σ = 0). Note that the feasibility is calculated against

observed data while RMS is calculated against true data. Recall that (obs) signifies

A(Xtrue), while (int) stands for Ac(Xtrue).

Alg Terminal Feasibility Time (s) RMS (obs) RMS (int)

Combined - VR Exact 0.0031 10.81 0.09 0.110

Combined - VR Noise 1.18e-08 19.84 0.06 0.100

FISTA 0.081 12.30 0.09 0.119

L-BFGS 0.074 57.22 0.09 0.128

Smooth only 0.0016 5.42 0.06 0.125

Low-rank only 0.058 1.27 0.08 0.216

Table 3 also shows the degree to which algorithms match the feasibility constraint.

FISTA and L-BFGS use penalties rather than constraints, so the precise data-misfit

level is hard to control. The terminal feasibility is 0.08(s) for FISTA and 0.075(s)

for L-BFGS, which means for each individual point, the values are close to fitting the

observed entries. FISTA’s feasibility level settles at approximately 0.08(s) and does

not change after about 1000 iterations; similar behavior is seen in L-BFGS. Variable

relaxation schemes can match the feasibility constraint to a high accuracy, with the

explicit inequality constraint matching close to numerical precision.

With both smoothness and low-rank regularization, fitting observed data inexactly

yields a better interpolation for missing data. Figure 6 shows that variable relaxation

inexact data fit (subfigure 6(a)) has fewer contrasts overall when compared to the fits

obtained using exact fit and competing algorithms. Focusing on a single source in

Figure 7, we can see that the inequality constraint produces a smoother image for

each particular source. While each algorithm effectively captures high energy area in

the northwest corner of the plot, most algorithms overestimate the amount of energy

that is actually present; variable relaxation with σ > 0 gets the closest values. All

algorithms tend to smooth out the observed entries, and tend to be less accurate the

fewer entries there are in a designated space, notably around the corners of the receiver

grid. Generally speaking, the combination of smoothness and low-rank works much

better for interpolating the interior station grid rather than extrapolation near the

edges. Figures 8 (full tensor) and 9 (single source) depict the absolute values of the

results for each algorithm and the true value. Figure 8 shows that some sources are

estimated very poorly, with the main error contributions coming further away from the

mountain.

Zooming in to a particular source, Figure 9 shows how much each algorithm over-

estimates the high-energy in the northwest corner of the map, primarily because the

observed data in that corner is also very large. Certain artifacts of the interpolation

schemes are seen more vividly in the difference plots. For instance, slightly northeast of

the center, there is a higher energy region where very few data points are collected. This

is very pronounced in the L-BFGS case (Figure 9(d)) but less pronounced in the variable
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relaxation case (Figure 9(a)). Overall, the amount of error present in the σ > 0 variable

relaxation case is lower than all the other schemes. This is particularly significant given

the relative magnitude of the problem. We can also solve the problem exactly for a

variety of general functions; the ‖L(·)‖22 smoothing-penalty is pertinent for the seismic

iMUSH data, but one can select different functions for different datasets. Competing

algorithms, FISTA and L-BFGS, solve approximate variants of the target problem. The

simplest Formulation (9) solved via FISTA (12) is essentially the Tikhonov Formula-

tion (1) with a Laplacian penalty. This solution performs worse overall, especially with

respect to interpolating unobserved data. Hence, the approach implemented with Al-

gorithm 1 is preferable, as it solves the target problem, achieving results with greater

accuracy, while requiring similar computational resources as the alternatives.



Efficient travel-time tomography 18

(a) Alg. 1 (σ > 0), Equation (9). (b) Alg. 1 (σ = 0), Equation (9).

(c) FISTA (Alg. 2), Equation (12). (d) L-BFGS, Equation (13).

(e) True model residuals, Xtrue.

Figure 6. Full tensor residual results (s) for different algorithms and formulations.
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(a) Alg. 1 (σ > 0), Equation (9). (b) Alg. 1 (σ = 0), Equation (9).

(c) FISTA Alg. 2, Equation (12) (d) L-BFGS, Equation (13).

(e) Observed model residuals. (f) True model residuals.

Figure 7. Single source residuals (s) for the different algorithms.
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(a) Alg. 1 (σ > 0), Equation (9). (b) Alg. 1 (σ = 0), Equation (9).

(c) FISTA Alg. 2, Equation (12) (d) L-BFGS, Equation (13).

(e) Low-Rank Equation (8). (f) Smoothing Equation (14).

Figure 8. Full tensor |X − Xtrue| for all algorithms. Note the significant scaling

difference in the FISTA result.
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(a) Alg. 1 (σ > 0). (b) Alg. 1 (σ = 0).

(c) FISTA Alg. 2, Equation (12) (d) L-BFGS, Equation (13).

(e) Low-Rank Equation (8). (f) Smoothing Equation (14).

Figure 9. |X −Xtrue| for all algorithms in a single source.

Next, we turn to singular value decay and convergence history. The singular value

decay is shown in Figure 10(c), and a log-log convergence plot appears in Figure 10(b).

With the exception of the smoothing-only implementation, all algorithms match the

SVD decay well. In Figure 10(b), L-BFGS and FISTA have similar convergence histo-

ries but L-BFGS has relatively slow compute time compared to the FISTA (and indeed

all other algorithms) when achieving a satisfactory answer. The proposed approach con-

verges faster than competing methods, and also matches the SVD decay of the ground

truth datasets.

Finally, we address the scalability of our algorithm and problem. Figure 5 shows our

results in computational time and root mean-squared error as we increase the number
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of sources from 22 to 202, the latter of which being the nearest perfect square to the

total number of sources observed in the iMUSH experiments. The number of iterations

for each algorithm remains the same, as do the hyperparameters for these algorithms.

The only change made is that for σ > 0; here, we make it so the average root mean-

squared error is 0.06. Much beyond 202, the matrix storage for the smoothing operator

becomes infeasible for a laptop computer, and source-separation parallelization would

have to occur [14]. From this, we can see that the algorithm, both with and without

root-finding, scales in similar computational time to FISTA.

(a) Log-log plot of time (s) as number

of sources increases.

(b) Data misfit decay. (c) SVD decay for interpolated matri-

ces.

Figure 10. Convergence information for different algorithms.

6. Application to Real Data

Algorithm 1 can be easily modified to fit real data by changing the constraint, A(·),
to another operator that manages the fit between interpolation data and the observed

stations. The formulation (9) is represented then as

min
L,R,W

1

2
‖L‖2F +

1

2
‖R‖2F +

1

2γ
‖L(W )‖22 +

1

2η
‖W −LRT‖2F s.t. ‖D(W )− b‖2 ≤ σ (15)

where the only difference between Formulation (9) and Formulation (15) is the

substitution of the restriction operator A(·) with an interpolation operator D(·) :
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RnRx
√
ns×nRy

√
ns → Rnd . The only requirement on the interpolation operator is that it is

linear; i.e. can be represented as a matrix. In this problem, the interpolation operator

takes the tensor W , permutes it and then uses a 2D linear Lagrange interpolation

function to map it to the observed field data for all sources, which is in b ∈ Rnd . Hence,

step 6 of Algorithm 1 becomes

Wk+1 = arg min
W
‖L(W )‖22 +

1

2η
‖W − Lk+1R

T
k+1‖2F s.t. ‖D(W )− b‖2 ≤ σ (16)

which collapses to

w(λ) := arg min
w

1

2γ
‖L∇w‖22 +

1

2η
‖w − dk+1‖2F +

λ

2
‖Dw − b‖2, (17)

where D ∈ Rnd×nRxnRyns is the matrix representing our interpolation operator. Hence

our solution for w is

w(λ) =

(
1

γ
(LT∇L∇) +

1

η
I + λDTD

)−1(
λDT b+

1

η
dk+1

)
.

Another way of formulating this problem is to take the analytic perspective; that is, we

let w ∈ Rnd and modify the problem as such

min
L,R,w

1

2
‖L‖2F +

1

2
‖R‖2F +

1

2γ
‖L (D(w)) ‖22+

1

2η
‖D(w)−LRT‖2F s.t. ‖w−b‖2 ≤ σ (18)

where D(·) : Rnd → RnRx
√
ns×nRy

√
ns ; this makes our root-finding process a bit easier to

implement. However, both approaches yield the same results.
For real data, the number of sources is reduced to ns = 25, while the grid remains

the same. We withhold 10% of the observed data for cross-validation purposes, and
perform Algorithm 1 with Formulation 15 for σ = 0. The results for this are shown in
Figure 11 and 12 and are summarized in Table 4. These results show that our accuracy
is greater the closer the points are to the center of the mountain. This makes sense, as
there are more sensors closer to the mountain than in the surrounding area. However,
we see an overall smoothness in the interpolated solution. This is a route for further
exploration, and possibly the makings of another paper.

Table 4. Results for real data with a sub-sampling rate of 10%. We ran the

modification of Algorithm 1 with Equation 15 with σ = 0. Since we don’t have true

data for comparison, this is simply compared to withheld data to measure accuracy,

despite uncertainty in observed data.
Data Mean |X −Xobs| RMS Median |X −Xobs|
Observed 0.14 1.3e-3 0.115

Withheld 0.15 1.4e-3 0.133



Efficient travel-time tomography 24

(a) Observed. (b) Observed single source.

(c) Omitted. (d) Omitted single source.

(e) Interpolated at observed receivers. (f) Interpolated at observed receivers

for a single source.

(g) Interpolated at hidden receivers. (h) Interpolated at hidden receivers for

a single source.

Figure 11. Residuals (s) for Algorithm 1 with real IMUSH data.
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(a) Difference in observed (b) Difference in observed for a single

source.

(c) Difference at hidden receivers. (d) Difference at hidden receivers for a

single source.

Figure 12. Receiver Differences for real IMUSH data.

7. Conclusions and Future Directions

Travel time tomography suffers from data collection constraints, reducing model

resolution. We proposed an interpolation scheme that combines both local smoothness

and low-rank information from a carefully chosen tessellation of the data to estimate

residual values at prospective stations. To implement the scheme, we developed a new

relaxation approach that is flexible enough to allow multiple regularizers, and efficient

in practice. We used it to estimate data from missing stations with a relatively high

degree of accuracy (measured against a synthetic ground-truth dataset), in the presence

of observation noise in available data. The algorithm is more flexible than available

alternatives, and in particular can fit available data to a prescribed error level. The

new approach is competitive with standard alternatives, and offers new functionality

to interpolate with both local and global structure over data fitting constraints. It is

important to note that none of the methods do well estimating where there are very

few stations. This can be observed in Figure 9, where the top left corner of each graph

has a high residual and no stations present towards border of the receiver space. The

proximity of at least one station increases the accuracy of our scheme.
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