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Problem Class - Decomposable Functions

Consider (possibly) nonconvex composite problems of the form

min 6(x) + () M)

» x € R" are the decision variables
>  may be nonsmooth, is convex typically

» ¢ is a ‘nice’ function (smooth, convex)
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Applications and Utility

» Nonsmooth (and nonconvex) functions are useful but difficult
» How do you minimize things without gradients or Hessians?
» Optimization community has focused on using first order
methods for nonsmooth functions

» Why do difficult functions arise?
» Implementation of nonsmooth/nonconvex regularizers and
constraints
» Promote simplicity in ill-posed or high-dimensional setting -
TV regularization
» “Classic” optimization examples: sparse regression, matrix
completion, phase retrieval

» Separable nonsmooth/nonconvex optimization is much easier
than the general case

» Special function structures can be exploited [4].
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Approach/Goals

» Can you exploit function structure to find minima?

» Tools: Infimal Convolution, Proximal Gradient Descent,
various accelerations (FISTA)

» Purpose: Bridge the gap between the optimization and PDE
communities.

» Numerical Example: Obstacle problem
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Infimal Convolution

Definition (Infimal Convolution)

Let f,g : H —] — 00, +00]. The infimal convolution or epi-sum of
fand gis

fOg : H — [—o00,4+00] : x — inf (f(y)+g(x—y)) (2)
yeH

and it is exact at a point x € H if
(fOg)(x) = minyew f(y) + g(x — y), ie

(Fy e H) (fOg)(x) = f(y) + g(x — y) €] — 00, 4+00].  (3)
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Infimal Convolution: Discussion

» Backbone of many convex (and sometimes nonconvex
optimization techniques)

» Has many useful properties (i.e. fOg = gOf,
dom(fOg) = dom(f) + dom(g) given f, g have affine
minorants, etc...)

» Useful for smoothing functions, looking at dual functions.
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Now with Norms

Proposition (Inf. Conv. of p-Norms)
For f € To(H), let v € R4y and p €]1,4+0c]. Then

fOJ <1H : ||P> i H —]—00,+00] : x > inf <f(y) + in - yll")
P yeHr TP
(4)
is convex, real-valued, continuous, and exact. Moreover, for every
x € H, the infimum is uniquely attained.

» Leads into 3-Pasch-Hausdorff envelopes, with useful properties
of Lipschitz functions that we will skip for now.
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The Most Important Norm: p = 2, Moreau-Yoshida
envelope/regularization [1]

Definition (Moreau Envelope)

Let f : H +—] — 00, +0o0] and let v € R4 the Moreau-Envelope of
f of parameter  is

f =10 (51 17). )

Definition (Proximal Operator/Mapping)

Let f € To(#H), x € H. Then prox,¢(x) is the unique point in
that satisfies

. 1
prox,¢(x) = argmin7f(x) = f(prox.¢(x)) + ZHX — prox,yf(x)||2.

’ (6)
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Properties& Example

Proposition (Firm Nonexpansivity)
Let f € To(H). Then proxs and | — proxy are firmly nonexpansive.

Proposition (Differentiability and Lipschitz)

Let f € To(H) and v € Ryy. Then 'f : H — R is Freéchet
Differentiable on H, and its gradient

V('F) =511~ prox, ) 7)

is Y~ 1-Lipschitz continuous.

» We can compute the proximal operator analytically for many
functions[?]:
» (1-norm: soft-thresholding
» Indicator Functions: if C is a nonempty closed convex subset
of H, then proxs_ = projc.
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Properties of the Prox

» 7f of convex f is 1/ smooth.
» Preserves optimal criterion: min, 7f = miny f(x)

> Preserves optimal solution: x minimizes f iff x minimizes 7f
for all ¥ > 0 (even for nonconvex)

> Fixed point iteration: x* minimizes f iff x* = prox. ¢(x*)
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Subgradients

Definition (Subgradient)
A vector g is a subgradient of convex f at x € dom(f) if
Vz € dom(f),

f(z) > f(x)+g"(z—x)
or more generally for nonconvex f
f(z) > f(x) + g7 (z = x) + ol|z = x]).

and Of(x) is the set of all g for which the above holds.

» General first order optimality:

0 € 9f(x) < x € argmin f(x)
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Operator View

> First order optimality conditions of 7f:
0€(x"—x)+0f(x") & x e x*+0f(x") = (I + 9f)(x¥)

> prox.(x) = (I +vof) 1 (x).
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Prox as Backwards Euler

» Gradient flow: x'(t) = —=Vf(x), x(0) = xo.
» First order numerical method for tracing path from xg to x
with finite difference (backwards)

Y Hx() = x(t = 7)) = = VF(x(1))
XKHL =k g (xk

*

> We can get the same thing with proximal operator:

k+1

x ol = xH|1?

2y
U differentiate w.r.t. x**
0= V() 4471 (= xK)

= argmin f(x)+

1
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How is this used?

» Smooths difficult regularizers
> Separate the composite function into distinct entities
» Generally: subgradients have nicer properties

» Naively: nonsmooth derivatives are subgradients, use the
subgradient method
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Subgradient Algorithm [3]

1: Input: x°

2: Initialize: kK = 0.

3: while not converged do

4: xK e xk=1 4ty gkt for gh=t € Of (xk1)
5: end while

6: Output: x

» Not necessarily a descent method
» Step sizes t, are pre-specified as fixed or diminishing; not
obvious.

> Objective function error level of O(1/v/k) after k iterations
even for Lipschitz, convex functions.
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Taking Advantage of Problem Structure

» Recall our problem:

min f(x) := ¢(x) + ¢(x)

X

where we know that some pure gradient info exists - V.

» With gradient descent, we'd minimize a 1st order
approximation of ¢ around x:

1
xt =argmin¢(x) + Vo' (z — x) + ZHZ —x|)?

b (2)

with V2¢(x) ~ v=11.
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Proximal-Gradient Derivation [3]

» Since f is not differentiable - approximate ¢ but leave :
x* = argmin G,(2) + o(2)
. 1
= argmin ¢(x) + Vo (z — u) + ToLL x|3 + ¢(2)
z

— arg min ¢(x) — V|6 (). ..
z
adds nothing

1
-+ VT (2= x) + |z = x[5 + vl +e(2)

complete the square

1
=argmin -~z — (x - vVo(x))II3 + ¢(2).

> XK = (I + vdp) (Il — vV @) xk.
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Proximal Gradient Algorithm

1: Input: x°

2: Initialize: kK = 0.

3: while not converged do

4: xk proxl,w,(xk_:l + v Vo (xk1))
5: end while

6: Output: x

18/24



Connections

» Moreau Envelope at the gradient update:

1
arg min Z”Z —(x= Vo) + ¢(2)
z v

- inimize
stay close to gradient update of ¢ minimize

> For G,(x) = v~ !(x — prox,,(x — ¥V¢(x))) (Generalized
gradient update - also gradient of Moreau Envelope)

k k—1

xK =Xk — G, (XK1

» Only need gradients of ¢, hopefully closed-form prox evaluation
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More Connections & Extensions

v

Can combine with backtracking linesearch to choose v

» Convergence rate of O(1/k).
‘Generalized Gradient Descent':

» o = 0: gradient descent
» © = §c: projected gradient descent
» ¢ = 0: proximal point algorithm

v

» Current work - inexact prox evaluation

v

Accelerate with momentum weights - FISTA [2]
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Acceleration - FISTA

® N e

Input: x°, x71, 0

Initialize: kK = 0.

while not converged do
XK 4= prox,, (v + vk Vo(y))
th « 3(1+ /1 +4(tk-1)?)
y xk + tk—tlk—l(xk . Xk—l)

end while

Output: x

21/24



FISTA

» Utilizes “momentum weights” in ¢

> lterations are proximal gradient steps at extrapolated points y
> xk are feasible, y are possibly outside the domain of ¢

» Convergence O(1/k?)
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Conclusions

> A variety of fast, first order methods exist for nonsmooth
problems - complete with analysis in finite dimensions

» More communication between PDE and optimization
communities

» Extensions into Sobolev spaces?
» Implementation in UFL languages?
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