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Problem Class - Decomposable Functions

Consider (possibly) nonconvex composite problems of the form

min
x
φ(x) + ϕ(x) (1)

I x ∈ Rn are the decision variables
I ϕ may be nonsmooth, is convex typically
I φ is a ‘nice’ function (smooth, convex)
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Applications and Utility

I Nonsmooth (and nonconvex) functions are useful but difficult
I How do you minimize things without gradients or Hessians?
I Optimization community has focused on using first order

methods for nonsmooth functions
I Why do difficult functions arise?

I Implementation of nonsmooth/nonconvex regularizers and
constraints
I Promote simplicity in ill-posed or high-dimensional setting -

TV regularization
I “Classic” optimization examples: sparse regression, matrix

completion, phase retrieval
I Separable nonsmooth/nonconvex optimization is much easier

than the general case
I Special function structures can be exploited [4].
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Approach/Goals

I Can you exploit function structure to find minima?
I Tools: Infimal Convolution, Proximal Gradient Descent,

various accelerations (FISTA)

I Purpose: Bridge the gap between the optimization and PDE
communities.

I Numerical Example: Obstacle problem
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Infimal Convolution

Definition (Infimal Convolution)
Let f , g : H →]−∞,+∞]. The infimal convolution or epi-sum of
f and g is

f�g : H → [−∞,+∞] : x 7→ inf
y∈H

(f (y) + g(x − y)) (2)

and it is exact at a point x ∈ H if
(f�g)(x) = miny∈H f (y) + g(x − y), i.e.

(∃y ∈ H) (f�g)(x) = f (y) + g(x − y) ∈]−∞,+∞]. (3)
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Infimal Convolution: Discussion

I Backbone of many convex (and sometimes nonconvex
optimization techniques)

I Has many useful properties (i.e. f�g = g�f ,
dom(f�g) = dom(f ) + dom(g) given f , g have affine
minorants, etc...)

I Useful for smoothing functions, looking at dual functions.
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Now with Norms

Proposition (Inf. Conv. of p-Norms)
For f ∈ Γ0(H), let γ ∈ R++ and p ∈]1,+∞]. Then

f�

(
1
γp
‖ · ‖p

)
: H →]−∞,+∞] : x 7→ inf

y∈H

(
f (y) +

1
γp
‖x − y‖p

)
(4)

is convex, real-valued, continuous, and exact. Moreover, for every
x ∈ H, the infimum is uniquely attained.

I Leads into β-Pasch-Hausdorff envelopes, with useful properties
of Lipschitz functions that we will skip for now.
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The Most Important Norm: p = 2, Moreau-Yoshida
envelope/regularization [1]

Definition (Moreau Envelope)
Let f : H 7→]−∞,+∞] and let γ ∈ R++ the Moreau-Envelope of
f of parameter γ is

γf = f�

(
1
2γ
‖ · ‖2

)
. (5)

Definition (Proximal Operator/Mapping)
Let f ∈ Γ0(H), x ∈ H. Then proxγf (x) is the unique point in H
that satisfies

proxγf (x) = arg min
y

γf (x) = f (proxγf (x)) +
1
2γ
‖x − proxγf (x)‖2.

(6)
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Properties& Example

Proposition (Firm Nonexpansivity)
Let f ∈ Γ0(H). Then proxf and I − proxf are firmly nonexpansive.

Proposition (Differentiability and Lipschitz)
Let f ∈ Γ0(H) and γ ∈ R++. Then γf : H → R is Freéchet
Differentiable on H, and its gradient

∇(γf ) = γ−1(I − proxγf ) (7)

is γ−1-Lipschitz continuous.

I We can compute the proximal operator analytically for many
functions[?]:
I `1-norm: soft-thresholding
I Indicator Functions: if C is a nonempty closed convex subset

of H, then proxδC
= projC .
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Properties of the Prox

I γf of convex f is 1/γ smooth.
I Preserves optimal criterion: minx

γf = minx f (x)

I Preserves optimal solution: x minimizes f iff x minimizes γf
for all γ > 0 (even for nonconvex)

I Fixed point iteration: x∗ minimizes f iff x∗ = proxγf (x∗)
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Subgradients

Definition (Subgradient)
A vector g is a subgradient of convex f at x ∈ dom(f ) if
∀z ∈ dom(f ),

f (z) ≥ f (x) + gT (z − x)

or more generally for nonconvex f

f (z) ≥ f (x) + gT (z − x) + o(‖z − x‖).

and ∂f (x) is the set of all g for which the above holds.

I General first order optimality:

0 ∈ ∂f (x)⇔ x ∈ arg min
x

f (x)
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Operator View

I First order optimality conditions of γf :

0 ∈ (x∗ − x) + ∂f (x∗)⇔ x ∈ x∗ + ∂f (x∗) = (I + ∂f )(x∗)

I proxγf (x) = (I + ν∂f )−1(x).
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Prox as Backwards Euler

I Gradient flow: x ′(t) = −∇f (x), x(0) = x0.
I First order numerical method for tracing path from x0 to x∗

with finite difference (backwards)

γ−1(x(t)− x(t − γ)) ≈ −∇f (x(t))

xk+1 = xk − γ∇f (xk+1)

I We can get the same thing with proximal operator:

xk+1 = arg min
x

f (x) +
1
2γ
‖x − xk‖2

⇓ differentiate w.r.t. xk+1

0 = ∇f (xk+1) + γ−1(xk+1 − xk)
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How is this used?

I Smooths difficult regularizers
I Separate the composite function into distinct entities
I Generally: subgradients have nicer properties
I Naively: nonsmooth derivatives are subgradients, use the

subgradient method
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Subgradient Algorithm [3]

1: Input: x0

2: Initialize: k = 0.
3: while not converged do
4: xk ← xk−1 + tkg

k−1 for gk−1 ∈ ∂f (xk−1)
5: end while
6: Output: x

I Not necessarily a descent method
I Step sizes tk are pre-specified as fixed or diminishing; not

obvious.
I Objective function error level of O(1/

√
k) after k iterations

even for Lipschitz, convex functions.
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Taking Advantage of Problem Structure

I Recall our problem:

min
x

f (x) := φ(x) + ϕ(x)

where we know that some pure gradient info exists - ∇φ.
I With gradient descent, we’d minimize a 1st order

approximation of φ around x :

x+ = arg min
z

φ(x) +∇φT (z − x) +
1
2ν
‖z − x‖2︸ ︷︷ ︸

φ̃ν(z)

with ∇2φ(x) ≈ ν−1I .
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Proximal-Gradient Derivation [3]

I Since f is not differentiable - approximate φ but leave ϕ:

x+ = arg min
z

φ̃ν(z) + ϕ(z)

= arg min
z

φ(x) +∇φT (z − u) +
1
2ν
‖z − x‖22 + ϕ(z)

= arg min
z

φ(x)− ν‖φ(x)‖2︸ ︷︷ ︸
adds nothing

. . .

. . .+∇φT (z − x) +
1
2ν
‖z − x‖22 + ν‖φ(x)‖2︸ ︷︷ ︸

complete the square

+ϕ(z)

= arg min
z

1
2ν
‖z − (x − ν∇φ(x))‖22 + ϕ(z).

I xk+1 = (I + ν∂ϕ)−1(I − ν∇φ)xk .
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Proximal Gradient Algorithm

1: Input: x0

2: Initialize: k = 0.
3: while not converged do
4: xk ← proxνkϕ(xk−1 + νk∇φ(xk−1))
5: end while
6: Output: x
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Connections

I Moreau Envelope at the gradient update:

arg min
z

1
2ν
‖z − (x − ν∇φ(x))‖22︸ ︷︷ ︸

stay close to gradient update of φ

+ ϕ(z)︸︷︷︸
minimize ϕ

I For Gν(x) = ν−1(x − proxνϕ(x − ν∇φ(x))) (Generalized
gradient update - also gradient of Moreau Envelope)

xk = xk−1 − νkGνk (xk−1)

I Only need gradients of φ, hopefully closed-form prox evaluation
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More Connections & Extensions

I Can combine with backtracking linesearch to choose νk
I Convergence rate of O(1/k).
I ‘Generalized Gradient Descent’:

I ϕ = 0: gradient descent
I ϕ = δC : projected gradient descent
I φ = 0: proximal point algorithm

I Current work - inexact prox evaluation
I Accelerate with momentum weights - FISTA [2]
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Acceleration - FISTA

1: Input: x0, x−1, t0

2: Initialize: k = 0.
3: while not converged do
4: xk ← proxνkϕ(y + νk∇φ(y))

5: tk ← 1
2(1 +

√
1 + 4(tk−1)2)

6: y ← xk + tk−1−1
tk

(xk − xk−1)
7: end while
8: Output: x
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FISTA

I Utilizes “momentum weights” in tk
I Iterations are proximal gradient steps at extrapolated points y
I xk are feasible, y are possibly outside the domain of ϕ
I Convergence O(1/k2)

22 / 24



Conclusions

I A variety of fast, first order methods exist for nonsmooth
problems - complete with analysis in finite dimensions

I More communication between PDE and optimization
communities
I Extensions into Sobolev spaces?
I Implementation in UFL languages?
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