
1

Basis Pursuit Denoise with Nonsmooth Constraints
Robert Baraldi1, Rajiv Kumar2, and Aleksandr Aravkin1.

1 Department of Applied Mathematics, University of Washington
2 Formerly School of Earth and Atmospheric Sciences, Georgia Institute of Technology, USA; Currently

DownUnder GeoSolutions, Perth, Australia

Abstract—Level-set optimization formulations with data-
driven constraints minimize a regularization functional subject to
matching observations to a given error level. These formulations
are widely used, particularly for matrix completion and sparsity
promotion in data interpolation and denoising. The misfit level
is typically measured in the `2 norm, or other smooth metrics.

In this paper, we present a new flexible algorithmic framework
that targets nonsmooth level-set constraints, including `1, `∞,
and even `0 norms. These constraints give greater flexibility
for modeling deviations in observation and denoising, and have
significant impact on the solution. Measuring error in the `1 and
`0 norms makes the result more robust to large outliers, while
matching many observations exactly.

We demonstrate the approach for basis pursuit denoise
(BPDN) problems as well as for extensions of BPDN to matrix
factorization, with applications to interpolation and denoising of
4D seismic data. The new methods are particularly promising
for seismic applications, where the amplitude in the data varies
significantly, and measurement noise in low-amplitude regions
can wreak havoc for standard Gaussian error models.

Index Terms—Nonconvex nonsmooth optimization, level-set
formulations, basis pursuit denoise, interpolation, seismic data.

I. INTRODUCTION

Basis Pursuit Denoise (BPDN) seeks a sparse solution to
an under-deterimined system of equations that have been
corrupted by noise. The classic level-set formulation [41], [3]
is given by

min
x
‖x‖1 s.t. ‖A(x)− b‖2 ≤ σ (1)

where A : Rm×n → Rd is a linear functional taking unknown
parameters x ∈ Rm×n to observations b ∈ Rd. Problem (1) is
also known as a Morozov formulation (in contrast to Ivanov or
Tikhonov [32]). The functional A can include a transformation
to another domain, including Wavelets, Fourier, or Curvelet
coefficients [13], as well as compositions of these transforms
with other linear operators such as restriction in interpolation
problems. The parameter σ controls the error budget, and is
based on an estimate of noise level in the data.

Problems with cardinality or sparsity constraints, such as
BPDN and the closely related LASSO formulation, have
applications to compressed sensing [33], [11], [18], image
processing [30], sparse controller design [28], and machine
learning [22], [20], as well as to more applied domains
including MRI [29] and seismic inversion [38]. Indeed, the
total variation norm, as well as other sparsity-inducing func-
tions, has been used to denoise images since the 1980s [34],
[16]. Seismic data is a key use case [4], [27], [15], and the
primary application for the techniques developed in this paper.
Data acquisition is prohibitively expensive in seismology and

interpolation techniques are used to fill in data volumes by
promoting parsimonious representations in the Fourier [35]
or Curvelet [24] domains. Matricization of the data leads
to low-rank interpolation schemes [4], [27], [15], [44]. The
types of errors encountered in seismic inversion motivate the
technology developed here. In our numerics section, we show
how using the `0 norm for the data misfit constraints can help
deal with the situation where uniformly large errors applied
across a range of scales creates a variable SNR that stops more
common losses from effectively recovering the signal.
Related Work. Theoretical recovery guarantees for classes
of operators A are developed in [11] and [39]. While BPDN
uses nonsmooth regularizers (including the `1 norm, nuclear
norm, and elastic net), the inequality constraint is ubiquitously
smooth, and often taken to be the `2 norm as in (1). Indeed,
the `1 norm is particularly useful in that it is a convex proxy
for sparsity [37] and much work has been done to remain
in this convex regime, despite some disadvantages of the `1
norm as a sparsity-inducing metric [36]. In most applications
of BPDN, the `2 norm in the context of Gaussian noise takes
on the interpretation that σ in Problem (1) is the variance of the
noise [17]. In almost all contexts, this noise is assumed to be
Gaussian [21], [37], [36]. This stems from the very nature of
denoising/image reconstruction being a very ill-posed problem
predicated on a-priori information about the data itself. Prior
work, including [42], [4], [15], [3], exploits the smoothness
of the inequality constraint in developing algorithms for the
problem class.

These smooth constraints work well when errors are Gaus-
sian, but this assumption fails for seismic data (explored in
[38]) and is often violated in many applications, from sparse
controller design [28] to compressed sensing [18].

The use of cardinality constraints (ie the `0 norm) to enforce
sparsity has been studied in depth in the case of convex cost
functionals [7] or continuously differentiable cost function-
als [8]. Nonsmooth data fidelity terms have been explored
by Nikolova in [31], whose work underscores the utility of
using these terms in modeling. We develop a broad class that
captures any nonsmooth nonconvex regularizer and/or misfit,
and gives a way to set an error-budget (σ in Equation 1). We
also explore the matrix variant of the problem, which can be
viewed as an extension of robust PCA [2], [12], [23]. Robust
PCA is equivalent to minimizing a rank functional subject to a
Huber data misfit [19], and hence misfit constrained versions
of the problem use smooth misfit constraints, see e.g. [4]. Our
formulation extends all these approaches to nonsmooth data
misfit constraints, including cardinality constraints, just as in
the vector case.

2

Contributions. The main contribution of this paper is to pro-
vide a fast, easily adaptable algorithm to solve non-smooth and
nonconvex data constraints in general level-set formulations
including BPDN, and illustrate the efficacy of the approach
using large-scale interpolation and denoising problems. To
do this, we extend the universal regularization framework
of [46] to level-set formulations with nonsmooth/nonconvex
constraints. We develop a convergence theory for the opti-
mization approach, and illustrate the practical performance of
the new formulations for data interpolation and denoising in
both sparse recovery and low-rank matrix factorization.
Roadmap. The paper proceeds as follows. Section II develops
the general relaxation framework and approach. Section III
specifies this framework to the BPDN setting with nonsmooth,
nonconvex constraints. In Section IV we apply the approach
to sparse signal recovery problem and sparse Curvelet recon-
struction. In Section V, we extend the approach to a low-rank
interpolation framework, which embeds matrix factorization
within the BPDN constraint. In Section VI we test the low-rank
extension using synthetic examples and data extracted from a
full 5D dataset simulated on complex SEG/EAGE overthrust
model.

II. NONSMOOTH, NONCONVEX LEVEL-SET
FORMULATIONS.

We consider the following problem class:

min
x
φ(C(x)) s.t. ψ(A(x)− b) ≤ σ, (2)

where φ and ψ may be nonsmooth, nonconvex, but have well-
defined proximity and projection operators:

proxηφ(y) = arg min
x

1

2η
‖x− y‖2 + φ(x)

projψ(·)≤σ = arg min
ψ(x)≤σ

1

2η
‖x− y‖2.

(3)

Here, C : Cm×n → Rc is typically a linear operator that
converts x to some transform domain, while A : Cm×n → Rd
is a linear observation operator also acting on x. In the context
of interpolation, A is often a restriction operator.

This setting significantly extends that of [3], who assume ψ
and φ are convex, C = I , and use the value function

v(τ) = min
x
ψ(A(x)− b) s.t. φ(x) ≤ τ

to solve (2) using root-finding to solve v(τ) = σ. Variational
properties of v are fully only understood in the convex setting,
and efficient evaluation of v(τ) requires ψ to be smooth, so
that efficient first-order methods are applicable.

Here, we develop an approach to solve any problem of
type (2), including problems with nonsmooth and nonconvex
ψ, φ, using only matrix vector products with A,AT , C, CT and
simple nonlinear operators. In special cases, the approach can
also use equation solves to gain significant speedup.

Algorithm 1 Prox-gradient for (4).
1: Input: x0, w0

1, w
0
2

2: Initialize: k = 0
3: while not converged do

4: xk+1 ←
xk − β

(
1

η1
CT (C(x)− w1)

+
1

η2
AT (A(x)− wk2 − b)

)
5: wk+1

1 ← proxβφ

(
wk1 −

β
η1

(wk1 − C(xk+1))
)

6: wk+1
2 ← projσBψ

(
wk2 −

β
η2

(wk2 − (A(xk+1)− b))
)

7: k ← k + 1
8: end while
9: Output: wk1 , wk2 , xk

The general approach uses the relaxation formulation pro-
posed in [46], [45]. We use relaxation to split φ, ψ from the
linear map A and transformation map C, extending (2) to

min
x,w1,w2

φ(w1) +
1

2η1
‖C(x)− w1‖2 +

1

2η2
‖w2 −A(x) + b‖22

s.t. ψ(w2) ≤ σ.
(4)

with w1 ∈ Rc and w2 ∈ Rd. In contrast to [46], we use a
continuation scheme to force ηi → 0, in order to solve the
original formulation (2). Thus the only external algorithmic
parameter the scheme requires is σ, which controls the error
budget for ψ.

There are two algorithms readily available to solve (4). The
first is prox-gradient descent, detailed in Algorithm 1. We let
z = [x,w1, w2]T , and define

Φ(z) = φ(w1) + δψ(·)≤σ(w2),

where the indicator function δψ(·)≤σ takes the value 0 if
ψ(w2) ≤ σ, and infinity otherwise. Problem (4) can now be
written as

min
z

1

2

∥∥∥∥∥
[

1√
η1
C − 1√

η1
I 0

1√
η2
A 0 − 1√

η2
I

]
z −

[
0
b

]∥∥∥∥∥
2

︸ ︷︷ ︸
f(z)

+Φ(z). (5)

Applying the prox-gradient descent iteration with step-size β

zk+1 = proxβΦ(zk − β∇f(zk)) (6)

gives the coordinate updates in Algorithm 1.
Prox-gradient has been analyzed in the general nonconvex

setting by [5], [6]. Since Problem 4 is semi-algebraic, we
have from [5] that Algorithm 1 (and its subsequent reductions,
Algorithms 2-4) converge to a critical point. However, we
can exploit the nature of our relaxation to make simple
improvements on the convergence rates for our particular
problem via selection of proximal-gradient step β, detailed
in upcoming sections.

Problem (5) is the sum of a convex quadratic and a noncon-
vex regularizer, and the rate of convergence for this problem
class can be quantified using [46, Theorem 2], reproduced
below.

3

Algorithm 2 Value-function optimization for (4).
1: Input: x0, w0

1, w
0
2

2: Initialize: k = 0
3: Define: H = 1

η1
CTC + 1

η2
ATA

4: while not converged do
5: xk+1 ← H−1

(
1
η1
CTwk1 + 1

η2
AT (b+ wk2)

)
6: wk+1

1 ← proxβφ

(
wk1 −

β
η1

(wk1 − C(xk+1))
)

7: wk+1
2 ← projσBψ

(
wk2 −

β
η2

(wk2 − (A(xk+1)− b)
)

8: k ← k + 1
9: end while

10: Output: wk1 , wk2 , xk

Theorem II.1 (Prox-gradient for Regularized Least Squares).
Consider the least squares objective

min
z
p(z) :=

1

2
‖Gz − g‖2 + Φ(z).

with p bounded below, and Φ potentially nonsmooth, non-
convex, and non-finite valued. With step β = ‖G‖−2

2 =
σmax(G)−2, the iterates (6) satisfy

min
k=0,...,N

‖νk+1‖2 ≤ ‖G‖
2

N
(p(z0)− inf p)

where

νk = (‖G‖22I −GTG)(zk − zk+1) ∈ ∂p(zk+1)

is a subgradient (generalized gradient) of p at zk+1.

We can specialize Theorem II.1 to our case by computing
the norm of the least squares system in (5).

Corollary II.2 (Rate for Algorithm 1). Theorem II.1 applied
to Problem 4 gives

min
k=0,...,N

‖νk+1‖2 ≤ C(η1, η2, C,A)
1

N
(p(z0)− inf p)

with

C(η1, η2, C,A) =
1

η1
(c+ ‖C‖2F) +

1

η2
(d+ ‖A‖2F).

Problem (4) also admits a different optimization strategy,
summarized in Algorithm 2. We can formally minimize the
objective in x directly via the gradient, with the minimizer
given by

x(w) = H−1
([
η−1

1 CT η−1
2 AT

]
w + η−1

2 AT b
)

H =
1

η1
CTC +

1

η2
ATA

with w = [w1, w2]T . From A and C, we have that H ∈
Cmn×mn (for vectorized x). A direct solution is obtained
by taking a Cholesky decomposition H (as it is SPD) and
using back-substitution on the result for O

(
(mn)3/3

)
FLOPs.

However, this requires a Cholesky decomposition every time
η1 and η2 are updated. This cost and potentially huge nature of
H means that conjugate gradient descent can also be used to
solve the least squares problem for x(w). In subsection II-A,
we explore inexact least square solves, and show that conver-
gence is possible even for minimal CG iterations.

Once x(w) is solved for directly, this expression is plugged
back in to give a regularized least squares problem in w alone:

min
w1,w2

p(w) := φ(w1) +
∥∥∥Fw − b̃∥∥∥2

s.t. ψ(w2) ≤ σ

F =

 1√
η1

(
1
η1
CH−1CT − I

)
1√
η1η2
CH−1AT

−1√
η2η1
AH−1CT 1√

η2

(
I − 1

η1
AH−1AT

)
b̃ =

[−1√
η1η2
CH−1AT b

1√
η2

(
1
η1
AH−1AT − I

)
b

]
.

(7)
Prox-gradient applied to the value function p(w) in (7) with
step β gives the iteration

w+ = proxβΦ(wk − βFT (Fw − b̃)) (8)

This iteration, as formally written, requires forming and ap-
plying the system F in (7) at each iteration. In practice we
compute the x(w) update on the fly, as detailed in Algorithm 2.
The equivalence of Algorithm 2 to iteration (8) comes from
the following derivative formula for value functions [9]:

FT (Fw − b̃)) =
1

η1
CT (C(x(w))− w1)

+
1

η2
AT (A(x(w))− (w2 + b)).

In order to compute β, and apply Theorem II.1, we first prove
the following lemma:

Lemma II.3 (Bound on ‖FTF‖2). The operator norm
‖FTF‖2 is bounded above by max

(
1
η1
, 1
η2

)
.

Proof. Considering the function

‖Fw−b̃‖2 = min
x

1

2η1
‖C(x)− w1‖2 +

1

2η2
‖w2 −A(x) + b‖22︸ ︷︷ ︸

Q(x,w)

,

we know that the gradient is given by FT (Fw − b̃), and any
Lipschitz bound L gives

‖FTFw1 −FTFw2‖ ≤ L‖w1 − w2‖,

which means ‖FTF‖2 ≤ L. On the other hand, we can write
the right hand side as

Q(w, x) = q(Dw, x)

where

q(z, x) =
1

2

∥∥∥∥∥z −
[

1√
η1
C(x)

1√
η2
A(x)

]
−
[
0
b

]∥∥∥∥∥
2

and

D =

[
1√
η1

0

0 1√
η2

]
.

Using Theorem 1 of [45] with g(z) = 0, we have that the
value function

q̃(z) = min
x
q(z, x)

is differentiable, with lip(∇q̃) ≤ 1. Therefore

Q̃(w) = min
x
Q(w, x)

4

Algorithm 3 Block-coordinate descent for (4).
1: Input: x0, w0

1, w
0
2

2: Initialize: k = 0
3: Define: H = 1

η1
CTC + 1

η2
ATA

4: while not converged do
5: xk+1 ← H−1

(
1
η1
CTwk1 + 1

η2
AT (b+ wk2)

)
6: wk+1

1 ← proxη1φ
(
C(xk+1)

)
7: wk+1

2 ← projσBψ
(
A(xk+1)− b)

)
8: k ← k + 1
9: end while

10: Output: wk1 , wk2 , xk

is also differentiable, with

∇Q̃(w) = DT∇q̃(Dw),

and hence

lip(∇Q̃) ≤ ‖DTD‖2 = max

(
1

η1
,

1

η2

)
.

This immediately gives the result.

Now we can combine iteration (8) with Theorem II.1 to get
a rate of convergence for Algorithm 2.

Corollary II.4 (Convergence of Algorithm 2). When β satis-
fies

β ≤ min(η1, η2),

the iterates of Algorithm 2 satisfy

min
k=0,...,N

‖νk+1‖2 ≤ 1

N
max

(
1

η1
,

1

η2

)
(p(w0)− inf p))

where νk is in the subdifferential (generalized gradient) of
objective (7) at wk. Moreover, if η1 = η2, then Algorithm (2)
is equivalent to block-coordinate descent, as detailed in Algo-
rithm 3.

Proof. The convergence statement comes directly from plug-
ging the estimate of iteration 8 into Theorem II.1. The equiva-
lence of Algorithm 3 with Algorithm 2 is obtained by plugging
in step size β = η1 = η2 into each line of Algorithm 2.

An important consequence of Corollary II.4 is that the
convergence rate of Algorithm 2 does not depend on C or A, in
contrast to Algorithm 1, whose rate depends on both matrices
(Corollary II.2). The rates of both algorithms are affected by
(η1, η2). We use continuation in ηi, driving (η1, η2) to (0, 0) at
the same rate, and warm-starting each problem at the previous
solution. A convergence theory that takes this continuation into
account is left to future work.

Algorithm (3) is similar to the Proximal Alternating Min-
imization (PAM) algorithm [6]. Indeed PAM and other al-
gorithms, such as the linearized version of PAM called
PALM [10] can be used to solve the relaxed problem (2). How-
ever the PAM algorithm is different from Algorithm 3, since
it requires additional proximal terms. The analysis using the
value function reduces problem (2) to a simpler problem, the
sum of a quadratic in

[
w1 w2

]
and a nonconvex regularizer

in
[
w1 w2

]
, and allows the simple proximal gradient method.

The detailed implementation of this approach, with explicit x
updates, gives Algorithm 3. Moreover we get a clear rate of
convergence for the algorithm and can show that it does not
depend on the quantities C and A.

A. Inexact Least-Squares Solves.

Algorithm 3 has a provably faster rate of convergence than
Algorithm 1. The practical performance of these algorithms
is compared in Figure 1, which is solving a problem with
both a `1 norm regularizer and `1 norm BPDN constraint,
with α = ‖A‖−2

F , C = I , and η1 = η2 = 10−4. We
see a huge performance difference in practice as well as in
theory: the proximal gradient descent from Algorithm 1 yields
a slower cost function decay than solving exactly for x(w)
as in Algorithm 3. Indeed, Algorithm 3 admits the fastest
cost function decay as shown in Corollary II.4, albeit at the
expense of more operations per iteration. This is due to the
fact that fully solving the least squares problem in Line 5 is
not tractable for large-scale problems. Hence, we implement
Algorithm 3 inexactly, using the Conjugate Gradient (CG)
algorithm. Figure 1 shows the results when we use 1, 5, and
20 CG iterations. Each CG iteration is implemented using
matrix-vector products, and at 20 iterations the results are
indistinguishable from those of Algorithm 3 with full solves.
Even at 5 iterations, the performance is remarkably close to
that of of Algorithm 3 with full solves. Algorithm 3 has a
natural warm-start strategy, with the x from each previous
iteration used in the subsequent least-squares solve using CG.
Using a CG method with a bounded number of iterates gives
fast convergence and saves computational time. This approach
is used in the subsequent experiments.

III. APPLICATION TO BASIS PURSUIT DENOISE MODELS

The Basis Pursuit Denoise problem can be formulated as

min
x
φ(x) s.t. ψ (A(x)− b) ≤ σ (9)

where ψ(·) is classically taken to be the `2 norm and the
sparsity-inducing cost-functional φ(·) is often chosen to be
‖ · ‖1, though more general norms/gauges are also used [43].
In this problem, x represents unknown coefficients that are
sparse in a transform domain, while A is a composition of the
observation operator with a transform matrix; popular exam-
ples of transform domains include discrete cosine transforms,
wavelets, and curvelets. The observed and noisy data b resides
in the temporal/spatial domain, and σ is the misfit tolerance.
This problem was famously solved with the SPGL1 [42]
algorithm for ψ(·) = ‖ · ‖2 while minimizing ‖x‖1.

A nonsmooth variant of (9) is very difficult for approaches
such as SPGL1, which solves subproblems of the form

min
x
ψ (A(x)− b) s.t. ‖x‖1 ≤ τ.

and cannot handle nonsmooth functions, let alone the car-
dinality ‘norm’ ψ(·) = `0(·). When the observed data is
affected by large sparse noise, this smooth constraint used
by SPGL1 is ineffective. However, the proposed Algorithm 2
is easily adaptable to different norms/penalties in both cost-
functional and constraint. We can solve Problem 9 by applying

5

Fig. 1. Objective function decay for Equation 4 with proximal-gradient
descent (Algorithm 1), Direct solving (Algorithm 3), and several steps in
between where we only partially solve for H−1(. . .) with Algorithm 2.

Algorithm 3 with φ(x) = ‖x‖1, taking (η1, η2) → (0, 0) so
that (w1, w2)→ (x,A(x)−b). This means that the w1 update
in Algorithm 3 is the well-known proximal operator of `1,
given by

proxβ‖·‖1(x) = sign(x) max(0, |x| − β).

In addition, we know from [36] that the `1 norm can under-
estimate true signal values. To that end, our first example in
Section IV also solves the sparsity-inducing cost-functional
‖x‖0, where our w1 update in Algorithm 3 becomes

proxβ‖·‖0(x)i =


0 |xi| <

√
2β,

{0, xi} |xi| =
√

2β,

xi |xi| >
√

2β

(10)

or the hard-thresholding operator. We can take many different
ψ(·), including `2, `1, `∞, and `0.

Algorithm 3 is simple to implement. The least squares
update in step 4 can be computed efficiently using either
factorization with Woodbury, or an iterative method in cases
where A is too large to store.

For the Woodbury approach, we have

(
η2 + η1ATA

)−1
=

1

η2
I − 1

η2
2

AT
(

1

η1
I +

1

η2
AAT

)−1

A.
(11)

For moderate size systems, we can store Cholesky factor

LLT =
1

η1
I +

1

η2
AAT ,

with L ∈ Rm×m, and use L with (11) to implement step 4.
However, in the seismic/curvelet experiment described below,
the left-hand side of Equation 11 is too large to store in
memory, but is positive definite. Hence, we solve the resulting
linear system in step 4 of Algorithm 3 with CG, using matrix-
vector products. The w1 update is implemented via the `1
proximal operator (soft thresholding), while the w2 update
requires a projection onto the `p ball. The projectors used in
our experiments are collected in Table I.

The least squares solve for x is when CT is an orthogonal
matrix or tight frame, so that CTC = I; this is the case
for Fourier transforms, wavelets, and curvelets. When A is a

TABLE I
PROJECTORS FOR `p BALLS.

Norm `(x) projτB` (z) Solution

`2

√∑
i x

2
i

{
z, ‖z‖ < τ

τz/‖z‖2, ‖z‖ > τ
Analytic

`∞ maxi |xi| max(min(x, 1),−1) Analytic
`1

∑
i |xi| See e.g. [41] O(n lnn)

`0
∑
i 1xi 6=0

{
zi, i in τ largest indices
0 otherwise.

Analytic

restriction operator, as for many data interpolation problems,
ATA is a diagonal matrix with zeros and ones, and hence

H =
1

η1
CTC +

1

η2
ATA

is a diagonal matrix with entries either 1
η1

or 1
η1

+ 1
η2

; the least
squares problem for the x update is then trivial.

IV. BASIS PURSUIT DE-NOISE EXPERIMENTS

In this application, we consider two examples: the first is
a small-scale BPDN to illustrate the proof of concept of our
technique, while the second is an application to denoising a
common source gather extracted from a seismic line simulated
using a 2D BG Compass model.

A. Spike-Train BPDN

The first example considers the same model as in (9) where
we want to enforce sparsity on x while constraining the data
misfit. The variable x is a vector of length n that has values
{−1, 1} on a random 4% of its entries and zeros everywhere
else; represents a spike train that is acted upon by a linear
operator, A ∈ Rn,m. A was generated with independent stan-
dard Gaussian entries, and b ∈ Rm is observed data with large,
sparse noise. We take m = 120 and n = 512. The noise is
generated by placing large values on 10% of the observations
and assuming everything else was observed cleanly (ie no
noise). For this example, we first test the efficacy of using
different `p norms on the residual constraint only, keeping
the φ(·) = ‖ · ‖1. With the addition of large, sparse noise
to the data, smooth norms on the residual constraint should
not be able to effectively deal with such outlier residuals.
With our adaptable formulation, it should be easy to enforce
both sparsity in the x domain as well as the residuals. Other
formulations, such as SPGL1, do not have this capability. We
offer a comparable result to CVX with the linear program
φ(·), ψ(·) = `1.

True signal values, the transformed signal, and the observed
data is given in Figure 2. The results of solving Problem 9
with cost-function φ(·) = ‖ · ‖1 are shown in Figure 3 and in
Table II. From these, we can clearly see that the `2 norm is not
effective for sparse noise, even at the correct error budget σ.
Our approach is resilient to different types of noise since we
can easily change the residual ball projection. This is seen by
the almost exact accuracy of the `1 and `0 norms as choices for
ψ(·), with SNR’s of 33 and 45 respectively. This is comparable
to solving φ(·), ψ(·) = `1(·) with CVX, as implementation

6

(a) True Signal: x

(b) True transformed signal: Ax

(c) Observed/noisy values: b

Fig. 2. True signal, transformed signal, and noisy signals used in for the first
experiment in Section IV.

with that program yields an SNR of 35, as seen in Table II.
CVX, however, fails for larger examples given in subsequent
sections.

TABLE II
SNR VALUES AGAINST THE TRUE x FOR φ(·) = `1 AND DIFFERENT

ψ(·) = `p NORMS WITH SPGL1, CVX, AND ALGORITHM 3.

Spike-Train BPDN (9)
ψ(·)/Method SNR
`2 with SPGL1 0.2007
`2 with Alg.3 0.2032
`1 with CVX 35.3611
`1 with Alg.3 33.7281
`∞ with Alg.3 -0.6708
`0 with Alg.3 45.0601

TABLE III
SNR VALUES AGAINST THE TRUE x FOR DIFFERENT COMBINATIONS OF

SPARSITY-INDUCING φ(·) = `1, `0 AND ψ(·) = `2, `0 NORMS WITH
SPGL1 AND ALGORITHM 3.

Spike-Train BPDN (9)
φ(·)/ψ(·)/Method SNR
`1 / `2 with SPGL1 0.2007
`1 / `2 with Alg.3 0.2031
`1 / `0 with Alg.3 45.0440
`0 / `2 with Alg.3 -1.2828
`0 / `0 with Alg.3 44.4239

Secondly, we conduct a similar experiment, but test the
resilience of our formulation to different sparsity-inducing
metrics; this amounts to changing the φ(·) in the cost-function
of Problem 9. Specifically, we change it to the `0(·) norm
(since we know we have to promote sparsity), and conduct
a similar experiment as above - that is, we solve Problem 9,

(a) SPGL1, ψ = `2

(b) ψ = `2

(c) ψ = `1

(d) CVX, ψ = `1

(e) ψ = `∞

(f) ψ = `0

Fig. 3. Basis Pursuit Denoising results on Problem 9 with cost-functional
φ(·) = ‖ · ‖1 for a randomly generated linear model with large, sparse noise.
Here, ψ(·) can be any of the `p norms in Table I.

desiring a sparse signal from observed data with large sparse
outliers. Hence, we want sparsity in both our signals and our
observations. Note that this equations to setting w1 as the prox-
imal operator of the `0 norm, which is the hard-thresholding
operator detailed in Equation 10. Our results are shown in
Table III. We see that the in Table III, typical Problem 9 with
`1 norm solved with both Algorithm 3 and SPGL1 does not
perform well. Indeed, even inducing sparsity with the `0(·)
cost-functional and ψ(·) = `2(·) in the constraints, we do
not get the desired performance. However, inducing sparsity
in the cost-functional (with both `1, and `0) gives us the
most favorable results, with SNRs of 45 and 44 respectively.
Recovered signals are shown in Figure 5.

B. Curvelet Interpolation

The next test of the BPDN formulation is for a common
source gather where entries are both omitted and corrupted

7

(a) SPGL1, ψ = `2

(b) ψ = `2

(c) ψ = `1

(d) CVX, ψ = `1

(e) ψ = `∞

(f) ψ = `0

Fig. 4. Residuals after algorithm termination for solving Problem 9 where
φ(·) = ‖ · ‖1, and using SPGL1 and Alg. 3 with different ψ(·) = `p norms.
Note how the `1 and `0 norms can capture the outliers only.

with synthetic noise. The data set contains time samples with
a temporal-interval of 4ms, and the spatial sampling is 10m.
Here, the objective function looks for sparsity in the curvelet
domain, while the residual constraint seeks to match observed
data within a certain tolerance σ. First, we note that doing
interpolation only without added noise yields an SNR of

(a) SPGL1: φ(·) = `1, ψ(·) = `2

(b) Alg 3: φ(·) = `1, ψ(·) = `2

(c) Alg 3: φ(·) = `1, ψ(·) = `0

(d) Alg 3: φ(·) = `0, ψ(·) = `2

(e) Alg 3: φ(·) = `0, ψ(·) = `0

Fig. 5. Residuals after algorithm termination for solving Problem 9 where
φ(·) = `1, and using SPGL1 and Alg. 3 with different ψ(·) = `p norms.
Note how the `1- and `0 norms can capture the outliers only.

approximately 13 for all formulations and algorithms; that is,
all `p norms for Algorithm 3 and SPGL1. Here, we again want
to enforce sparsity both in the curvelet domain (C(x)) and the
data residual (‖A(x)−b‖), for which our algorithm is uniquely
adapted to solve.

Following the first experiment of the spike-train example in
subsection IV-A, we add large sparse noise to a handful of
data points; in this case, we added large values to a random
1% of observations (this does not include omitted entries). The
noise added is approximately 120, while the observed data can
range from 0 to 30. The interpolated and denoising results are
shown in Figure 6 and Table IV. Large, sparse noise cannot be
filtered effectively by a smooth norm constraint, using either
Algorithm 3 or SPGL1. However, `1 and `0 norms effectively
handle such noise, and can be optimized using our approach.
The SNR’s for these implementations are approximately 15
respectively, approaching that of the noiseless data mentioned
above.

We then repeated the experiment done in subsection IV-A
where φ(·) is changed to be the `0 norm as well as the `1
norm. Similarly to Table III, we have that sparsity in both φ(·)
and ψ(·) can efficiently recapture the original signal. Table V
shows that setting φ(·) = `0 together with sparse constraints

8

TABLE IV
CURVELET INTERPOLATION AND DENOISING RESULTS FOR SPGL1 AND

ALGORITHM 3 φ(·) = `1 AND ψ(·) = `p NORMS FOR BPDN (9).

Curvelet Interpolation & Denoising
ψ(·)/Method SNR SNR w1 Time (s)
`2 with SPGL1 1.4857 - 68.4 (early stoppage)
`2 with Alg.3 0.9769 0.9693 6199
`1 with Alg.3 14.9574 14.9436 5037
`∞ with Alg.3 0.0000 0 1527
`0 with Alg.3 14.9212 14.9142 6262

TABLE V
CURVELET INTERPOLATION AND DENOISING RESULTS FOR SPGL1 AND
ALGORITHM 3 WITH DIFFERENT COMBINATIONS OF SPARSITY-INDUCING

φ(·) = `1 , `0 , AND ψ(·) = `2, `0 NORMS FOR BPDN (9).

Curvelet Interpolation & Denoising
φ(·)/ψ(·)/Method SNR SNR w1 Time (s)
`1 / `2 with SPGL1 1.4857 - 51.4 (early stoppage)
`1 / `2 with Alg.3 0.9769 0.9693 4043
`1 / `0 with Alg.3 14.9212 14.9142 4256
`0 / `2 with Alg.3 0.1542 0.1199 4084
`0 / `0 with Alg.3 14.042 13.7999 4086

(either `1 or `0) recapture the signal quite well; both have an
SNR of approximately 14, over SNR’s of close to 1 for every
other combination.

V. EXTENSION TO LOW-RANK MODELS

Treating the data as having a matrix structure gives addi-
tional regularization tools — in particular low-rank structure
in particular domains. The BPDN formulation for residual-
constrained low-rank interpolation is given by

min
X
‖X‖∗ s.t. ψ (A(X)− b) ≤ σ (12)

for X ∈ Cm×n, A : Cn×m → Cp is a linear masking
operator from full to observed (noisy) data b, and σ is the
misfit tolerance. The nuclear norm ‖X‖∗ is the `1 norm of
the singular values of X . Solving the problem (12) requires
using a decision variable that is the size of the data, as well
as updates to this variable that require SVDs at each iteration.
It is much more efficient to model X is a product of two
matrices L and R, given by

min
L,R

1

2
(‖L‖2F + ‖R‖2F) s.t. ψ

(
A(LRT)− b

)
≤ σ (13)

where L ∈ Cn×k, R ∈ Cm×k, and LRT is the low-rank repre-
sentation of the data. The solution is guaranteed to be at most
rank k, and in addition, the regularizer 1

2 (‖L‖2F +‖R‖2F) is an
upper bound for ‖LRT ‖∗, the sum of singular values of LRT ,
further penalizing rank by proxy. The decision variables then
have combined dimension k(m × n), which is much smaller
than the nm variables required by convex formulations. When
ψ is smooth, the problems are solved using a continuation
that interchanges the roles of the objective and constraints,
solving a sequence of problems where ψ

(
A(LRT)− b

)
is

minimized over the `2 ball [4] using projected gradient; an
approach we call SPGLR below, which is a modification of
SPGL1 specifically adapted for matrix completion.

(a) True Data (b) Added Noise (binary)

(c) Noisy Data with Missing Sources (d) SPGL1

(e) ψ = l2 (f) ψ = l1

(g) ψ = l∞ (h) ψ = l0

Fig. 6. Interpolation and denoising results for BPDN in the curvelet domain.
Observe the complete inaccuracy of smooth norms with large, sparse noise.

When ψ is not smooth, SPGLR does not work and there
are no available implementations for (13). Nonsmooth ψ arise
when we want the residual to be in the `1 norm ball, so we
are robust to outliers in the data, and can exactly fit inliers.
We now extend Algorithm 3 to this case. For any ψ (smooth
or nonsmooth), we introduce a latent variable W for the data
matrix, and solve

min
L,R,W

∥∥∥∥LR
∥∥∥∥2

F

+
1

2η
‖W − LRT ‖22, s.t. ‖A(W)− b‖p ≤ σ

(14)
with η a parameter that controls the degree of relaxation; as
η ↓ 0 we have W → LRT . The relaxation allows a simple
block-coordinate descent, detailed in the simple to implement
Algorithm 4. It requires two least squares solves (for L and R),
which are inherently parallelizable. It also requires a projection
of the updated data matrix estimates LRT onto the σ-level set
of the misfit penalty ψ.

9

Algorithm 4 Block-Coordinate Descent for (14).
1: Input: w0, L0, R0

2: Initialize: k = 0
3: while not converged do
4: Lk+1 ←

(
I + ηRTkRk

)−1
(ηWkRk)

5: Rk+1 ← (ηWT
k Lk+1)

(
I + ηLTk+1Lk+1

)−1

6: Wk+1 ←

{
(Lk+1R

T
k+1)ij , (i, j) ∈ Xobs

projBψ,σ
(
A(Lk+1R

T
k+1)− b

)
, o.w.

7: k ← k + 1
8: end while
9: Output: wk, Lk, Rk

For unobserved data (i, j) 6∈ Xobs, we have Wij =
(LRT)ij . For observed data, let v denote A(LRT). Then the
W update step is given by solving

min
w
‖w − v‖22, s.t.‖w − b‖p ≤ σ.

Using the simple substitution z = w − b, the we get

min
z
‖z − (v − b)‖22, s.t. ‖z‖p ≤ σ

which is precisely the projection of A(LRT) − b onto Bψ,σ,
the σ-level set of ψ. We use the same projectors for ψ ∈
{l0, l1, l2, l∞} as in Section IV, see Table I. The convergence
criteria for Algorithm 4 is based on the optimality of the
quadratic subproblems in L,R and feasibility measure of
W − LRT , though in practice we compare performance of
algorithms based on a computational budget. This block-
coordinate descent scheme converges to a stationary point of
Equation 14 by [40, Theorem 4.1].

Implementing block-coordinate descent on these forms until
convergence produces the completed low-rank matrix. Setting
ν = ‖LRT −w‖22, we iterate until ν < 1e− 5 or a maximum
number of iterations is reached. In the next section, we develop
an application of this method to seismic interpolation and
denoising.

VI. 4D MATRIX COMPLETION WITH DENOISING

There are two main requirements when using the rank-
minimization based framework for seismic data interpolation
and denoising: (i) underlying seismic data should exhibit low-
rank structure (singular values should decay fast) in some
transform domain, and, (ii) subsampling and noise destroy the
low-rank structure (singular values decay slow) in that domain.
For exploiting the low-rank structure during interpolation and
denoising, we follow the matricization strategy proposed by
[14]. The matricization (source-x, source-y), i.e., placing both
the source coordinates along the columns, gives slow-decay of
singular values, while the matricization (source-x, receiver-x)
gives fast decay of the singular values. Subsampling destroys
the fast singular value decay in the (source-x, receiver-x) ma-
tricization, but not in the (source-x, receiver-y) matricization.
Thus the latter is more effective for low-rank interpolation.
These concepts are discussed in great detail by [25], [26].

Similar to the BPDN experiments, we want to show that
nonsmooth constraints on the data residual can be effective
for dealing with large, sparse noise. The smooth `2 norm

that is most common in BPDN problem will fail in such
examples, thereby leading to better data estimation with the
implementation of non-smooth norms on the residuals. Thus,
the goal of the below experiments is to show that enforcing
sparsity in the singular values (ie low-rank) and sparsity
in the residual constraint can be more effective with large,
sparse noise than smooth residual constraints solved by most
contemporary algorithms.

A. Experiment Description

This example demonstrates the efficacy of the proposed
approach using data created by a 5D dataset based on a
complex SEG/EAGE overthrust model simulation [1]. The
dimension of the model is 5 km × 10 km × 10 km and is
discretized on a 25 m × 25 m × 25 m grid. The simulated
data contains 201 × 201 receivers sampled at 50 m and
101 × 101 sources sampled at 100 m. We apply the Fourier
transform along the time domain and extract a frequency slice
at 10 Hz as shown in Figure 7(a), which is a 4D object
(source-x, source-y, receiver-x and receiver-y). We eliminate
80% of the sources and add large sparse outliers from the
random gaussian distribution N (0, ai max(Xsi)) (mean zero
and variance on the order of the largest value in that particular
source). The 10 generated values with the highest magnitudes
are kept, and these are randomly added to observations in
the remaining sources (Figure 7(f)). The largest value of our
dataset is approximately 40, while the smallest is close to
zero. Thus, we are essentially increasing/decreasing 1% of the
entries by several orders of magnitude, which contaminates
the data significantly, especially if the original entry was
nearly 0. For all low-rank completion and denoising, we let
ai = 10−1 except where we test the efficacy of Algorithm 4
against different noise levels σ. The objective is to recover
missing sources and eliminate noise from observed data.
We use a rank of k = 75 for the formulation (that is,
L ∈ Cn×75 and similarly for R), and run all algorithms
for 150 iterations, using a fixed computational budget. We
perform three experiments on the same dataset: 1) Denoising
only (Figure 7(c)); 2) Interpolation only (Figure 7(d)); and
3) Combined Interpolation and Denoising (Figure 7(f)). Since
we have ground truth, we pick σ to be the exact difference
between generated noisy data and the true data; σ for the l0
norm is a cardinality measure, so it is set to number of noisy
points added.

B. Results

Tables VI-VIII display SNR values for different algorithms
and formulations for the three types of experiments, and Fig-
ures 8-10 display the results for a randomly selected number
of sources for the three experiments. Even a small number
of outliers can greatly impact the quality of the low-rank de-
noising and interpolation for the standard, smoothly residual-
constrained algorithms. The denoising only results (Figure 8,
Table VI) show that all methods perform well when all sources
are available. The interpolation only results (Figure 9, Table
VII) show that all constraints perform well in interpolating the
missing data. This makes sense, as all algorithms will simply

10

TABLE VI
4D DENOISING RESULTS FOR SPGLR AND ALGORITHM 4 FOR SELECTED

`p NORMS.

4D Monochromatic Denoising
Method/ψ(·) SNR SNR-W Time (s)
`2 with SPGLR 11.7489 - 16530
l2 with Alg.4 11.7463 -2.3338 9430
l1 with Alg.4 11.7638 -2.3063 11546
l∞ with Alg.4 11.7456 -2.3338 12108
l0 with Alg.4 17.9595 48.8607 11569

TABLE VII
4D INTERPOLATION RESULTS FOR SPGLR AND ALGORITHM 4 FOR

SELECTED `p NORMS.

4D Monochromatic Interpolation
Method/ψ(·) SNR SNR-W Time (s)
`2 with SPGLR 16.3976 - 5817
l2 with Alg.4 16.0629 16.5424 7526
l1 with Alg.4 16.0692 16.5491 7996
l∞ with Alg.4 16.0627 16.5423 8119
l0 with Alg.4 16.0096 16.4728 6848

favor the low-rank nature of the data. However, the combined
denoising and interpolation dataset shows that the `0 norm
approach does far better than any smooth norm in comparable
time. Table VIII shows that when data for similar sources
is absent/not observed, the smoothly-constrained formulations
fail completely. When noise is added to the low-amplitude
section of the observed data, the smoothly-constrained norms
fail drastically, while the `0 norm can effectively remove the
errors. This is starkly evident in Figures 10(a)-10(e), where
all except Figure 10(e) are essentially noise; the result is
supported by the SNR values in Table VIII. While Figures
10(a)-10(e) can mostly capture the structure of the data where
there were nonzero values (ie where the seismic wave is
observed in the upper left corner of each source), only the
`0 norm can capture the areas of lower energy data.

Tables IX-X give performance results across noise levels
and degree of ‘missingness’ when using Algorithm 4. The
combined problem, where a lot of data is omitted and outliers
are present, is harder than either of the problems separately.
We vary the percentage of sources omitted from 50% - 90%,
and also vary the noise observed in two ways: (1) adding
more noise while keeping number of outliers per source
constant (nominally at 10), and (2) adding more noise by
adding outliers at similar noise levels. The results are shown
in Table IX and Table X. From Table IX, adding more noise
to the outliers does not affect our results; the projection
onto the `0 norm handles any obvious outlier. On the other
hand, adding more outliers at varying magnitudes affects the
results markedly. Increasing the number of outliers to 125 per
source observed (which is roughly 1% of total data) affects
performance of the `0 projection. From Table X, performance
with added noise alone degrades slowly, but once we start
omitting sources, the outlier/normal observation ratio increases
drastically for each 10% of sources withheld, we see decreased
performance.

TABLE VIII
4D COMBINED DENOISING AND INTERPOLATION RESULTS FOR SPGLR

AND ALGORITHM 4 FOR SELECTED `p NORMS.

4D Monochromatic Denoising & Interpolation
Method/ψ(·) SNR SNR-W Time (s)
`2 with SPGLR -3.2906 - 8712
l2 with Alg.4 0.9185 -0.3321 6802
l1 with Alg.4 0.9193 -0.3235 8068
l∞ with Alg.4 0.9185 -0.3321 8117
l0 with Alg.4 16.0655 16.5445 6893

TABLE IX
4D INTERPOLATION (LEFT), DENOISING (CENTER), AND COMBINED

(RIGHT) SNR RESULTS FOR ALGORITHM 4 WITH φ(·) = `0 . THE NUMBER
OF OUTLIERS IS CONSTANT PER SOURCE (10).

4D Monochromatic Denoising & Interpolation
% Obs. Int σ DN % σ Both

50 17.7120 4.0e6 17.9597 50 2.1e6 17.7170
40 17.5445 5.2e7 17.9597 40 2.0e7 17.5459
30 17.2183 6.0e8 17.9597 30 1.8e8 17.2136
20 16.0522 6.9e9 17.9596 20 1.3e9 16.0263
10 9.2123 7.7e10 17.9596 10 7.8e9 9.2602

VII. CONCLUSIONS

We proposed a new approach for level-set formulations,
including basis pursuit denoise and residual-constrained low-
rank formulations. The approach is easily adapted to a variety
of nonsmooth and nonconvex data constraints. The resulting
problems are solved using Algorithm 2 and 4; which require
only that the penalty ψ has an efficient projector. The al-
gorithms are simple, scalable, and efficient. Sparse curvelet
denoising and low-rank interpolation of a monochromatic slice
from the 4D seismic data volumes demonstrate the potential
of the approach.

A particular quality of the seismic denoising and interpola-
tion problem is that the amplitudes of the signal have signif-
icant spatial variation. The error in the data is a much larger
problem for low-amplitude data. This quality makes it very
difficult to obtain reasonable results using Gaussian misfits
and constraints. Nonsmooth exact formulations (including `1
and particularly `0) appear to be extremely well-suited for this
magnified heteroscedastic issue.

VIII. ACKNOWLEDGEMENTS

The authors acknowledge support from the Department of
Energy Computational Science Graduate Fellowship, which is
provided under grant number DE-FG02-97ER25308, and the
Washington Research Foundation Data Science Professorship.

TABLE X
4D INTERPOLATION (LEFT), DENOISING (CENTER), AND COMBINED

(RIGHT) SNR RESULTS FOR ALGORITHM 4 WITH φ(·) = `0 . THE ‘#OUT’
COLUMN GIVES THE NUMBER OF OUTLIERS IS PER SOURCE.

4D Monochromatic Denoising & Interpolation
% Obs. Int σ DN % σ # Out. Both

50 17.712 2.2e7 17.955 50 2.2e7 5 17.714
40 17.544 1.6e8 5.055 40 1.6e8 35 1.157
30 17.218 3.4e8 7.629 30 3.4e8 65 -1.019
20 16.052 5.5e8 5.519 20 5.5e8 95 -4.588
10 9.212 7.9e8 3.927 10 7.9e8 125 -9.627

11

(a) Fully sampled monochromatic
slize at 10 Hz.

(b) Noisy data alone (binary).
Sparse noise was added by keeping
the top 10 entries generated from a
normal distribution with mean zero
and variance 0.1max(Xsi)

(c) Observed noisy data. (d) Subsampled noiseless data. We
omitted 80% of sources.

(e) Subsampled and noise, with
noise only present (binary).

(f) Subsampled and noisy data. We
again omitted 80% of sources and
added the noise described above to
the rest of the sources.

Fig. 7. True data and three different experiments for testing our completeness
algorithm.

Code for this paper is listed at: https://github.com/rjbaraldi/
bpdn-with-nonsmooth-constraints.

REFERENCES

[1] F. Aminzadeh, N. Burkhard, L. Nicoletis, F. Rocca, and K. Wyatt.
Seg/eaeg 3-d modeling project: 2nd update. The Leading Edge,
13(9):949–952, 1994.

[2] A. Aravkin, S. Becker, V. Cevher, and P. Olsen. A variational approach
to stable principal component pursuit. UAI Proceedings, 2014.

[3] A. Y. Aravkin, J. V. Burke, D. Drusvyatskiy, M. P. Friedlander, and
S. Roy. Level-set methods for convex optimization. To appear in
Mathematical Programming, Series B., 2018.

[4] A. Y. Aravkin, R. Kumar, H. E. Mansour, B. Recht, and F. J. Her-
rmann. Fast methods for denoising matrix completion formulations,
with applications to robust seismic data interpolation. SIAM J. Scientific
Computing, 36, 2014.

[5] H. Attouch, J. Bolte, and B. Fux Svaiter. Convergence of descent meth-
ods for semi-algebraic and tame problems: proximal algorithms, for-
ward–backward splitting, and regularized gauss–seidel methods. Math-
ematical Programming, 137(1-2):91–129, 2013.

[6] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating
minimization and projection methods for nonconvex problems: An
approach based on the kurdyka-łojasiewicz inequality. Mathematics of
Operations Research, 35(2):438–457, 2010.

[7] G. Banjac and P. J. Goulart. A novel approach for solving convex prob-
lems with cardinality constraints. IFAC-PapersOnLine, 50(1):13182–
13187, 2017.

(a) SPGLR (b) ψ = l2

(c) ψ = l1 (d) ψ = l∞

(e) ψ = l0

Fig. 8. Denoising-only results.

(a) SPGLR (b) ψ = l2

(c) ψ = l1 (d) ψ = l∞

(e) ψ = l0

Fig. 9. Interpolation-only results.

12

(a) SPGLR (b) ψ = l2

(c) ψ = l1 (d) ψ = l∞

(e) ψ = l0

Fig. 10. Interpolation and Denoising results.

[8] A. Beck and Y. C. Eldar. Sparsity constrained nonlinear optimization:
Optimality conditions and algorithms. SIAM Journal of Optimization,
23(3):1480–1509, 2013.

[9] B. M. Bell and J. V. Burke. Algorithmic differentiation of implicit
functions and optimal values. In Advances in Automatic Differentiation,
pages 67–77. Springer, 2008.

[10] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized
minimization for nonconvex and nonsmooth problems. Mathematical
Programming, 146(1-2):459–494, 2014.

[11] E. J. Candès and T. Tao. Near-optimal signal recovery from random
projections: universal encoding strategies. IEEE Transactions on Infor-
mation Theory, 52(12):5406–5425, 2006.

[12] E. J. Candès, L. Xiaodong, Y. Ma, and J. Wright. Robust principal
component analysis? Journal of the ACM, 58(3):11, 2011.

[13] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition
by basis pursuit. SIAM Journal on Scientific Computing, 20(1):33–61,
1998.

[14] C. Da Silva and F. J. Herrmann. Optimization on the hierarchical tucker
manifold–applications to tensor completion. Linear Algebra and its
Applications, 481:131–173, 2015.

[15] D. Davis and W. Yin. Convergence rate analysis of several splitting
schemes. In Splitting Methods in Communication, Imaging, Science,
and Engineering, pages 115–163. Springer, 2016.

[16] G. Demoment. Image reconstruction and restoration: Overview of
common estimation structures and problems. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 37(12):259–268, December
1989.

[17] D. C. Dobson and F. Santosa. Recovery of blocky images from noisy and
blurred data. SIAM Journal of Applied Mathematics, 56(4):1181–1198,
1994.

[18] D. Donoho. Compressed sensing. IEEE Transactions on Information
Theory, 52(4):1289–1306, 2006.

[19] D. Driggs, S. Becker, and A. Aravkin. Adapting regularized low-rank
models for parallel architectures. SIAM Journal on Scientific Computing,
41(1):A163–A189, 2019.

[20] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle
regression. The Annals of Statistics, 32(2):407–99, 2004.

[21] R. Foygel and L. Mackey. Corrupted sensing: Novel guarantees for
separating structured signals. IEEE Transactions on Information Theory,
60(2):1223–1247, 2014.

[22] F. Girosi. An equivalence between sparse approximation and support
vector machines. Neural Comp., 10(6):1455–1480, 1998.

[23] W. Ha and R. Foygel Barber. Robust pca with compressed data. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems 28, pages
1936–1944. Curran Associates, Inc., 2015.

[24] F. J. Herrmann and G. Hennenfent. Non-parametric seismic data
recovery with curvelet frames. Geophysical Journal International,
173(1):233–248, 2008.

[25] A. Kadu and R. Kumar. Decentralized full-waveform inversion. Sub-
mitted to EAGE on January 15, 2018, 2018.

[26] R. Kumar, C. Da Silva, O. Akalin, A. Y. Aravkin, H. Mansour, B. Recht,
and F. J. Herrmann. Efficient matrix completion for seismic data
reconstruction. Geophysics, 80(5):V97–V114, 2015.

[27] R. Kumar, O. López, D. Davis, A. Y. Aravkin, and F. J. Herrmann. Beat-
ing level-set methods for 5-d seismic data interpolation: A primal-dual
alternating approach. IEEE Transactions on Computational Imaging,
3(2):264–274, June 2017.

[28] F. Lin, M. Fardad, and M. Jovanović. Design of optimal sparse
feedback gains via the alternating direction method of multipliers. IEEE
Transactions on Automatic Control, 58(9):2426–2431, 2013.

[29] M. Lustig, D. Donoho, and J. Pauly. Sparse mri: The application of
compressed sensing for rapid mr imaging. Magnetic Resonance in
Medicine, 58:1182–95, 2007.

[30] J. Mairal, F. Bach, and J. Ponce. Sparse modeling for image and vision
processing. Foundations and Trends in Computer Graphics and Vision,
8((2-3)):85–283, 2014.

[31] M. Nikolova. Minimizers of cost-functions involving the nonsmooth
data-fidelity terms. application to the processing of outliers. SIAM
Journal of Numerical Analysis, 40(3):965–994, 2002.

[32] L. Oneto, S. Ridella, and D. Anguita. Tikhonov, Ivanov and Morozov
regularization for support vector machine learning. Machine Learning,
103(1):103–136, 2016.

[33] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization.
SIAM Rev., 52(3):471–501, Aug. 2010.

[34] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D, 60:259–268, 1992.

[35] M. D. Sacchi, T. J. Ulrych, and C. J. Walker. Interpolation and
extrapolation using a high-resolution discrete fourier transform. IEEE
Transactions on Signal Processing, 46(1):31–38, Jan 1998.

[36] I. W. Selesnick and İ. Bayram. Enhanced sparsity by non-separable
regularization. IEEE Transactions on Signal Processing, 64(9):2298 –
2313, 2016.

[37] I. W. Selesnick and P.-Y. Chen. Group-sparse signal denoising: Non-
convex regularization, convex optimization. IEEE Transactions on
Signal Processing, 62(13):3464–3478, 2014.

[38] A. Tarantola. Inverse problem theory: Methods for data fitting and model
parameter estimation.

[39] J. A. Tropp. Just relax: Convex programming methods for identifying
sparse signals in noise. IEEE Transactions on Information Theory,
52(3):1030–1050, March 2006.

[40] P. Tseng. Convergence of a block coordinate descent method for
nondifferentiable minimization. Journal of optimization theory and
applications, 109(3):475–494, 2001.

[41] E. Van Den Berg and M. P. Friedlander. Probing the pareto frontier
for basis pursuit solutions. SIAM Journal on Scientific Computing,
31(2):890–912, 2008.

[42] E. van den Berg and M. P. Friedlander. Probing the pareto frontier
for basis pursuit solutions. SIAM J. Sci. Comput., 31(2):890–912, Nov.
2008.

[43] E. Van den Berg and M. P. Friedlander. Sparse optimization with least-
squares constraints. SIAM Journal on Optimization, 21(4):1201–1229,
2011.

[44] A. Yurtsever, M. Udell, J. A. Tropp, and V. Cevher. Sketchy Decisions:
Convex Low-Rank Matrix Optimization with Optimal Storage. ArXiv
e-prints, Feb. 2017.

[45] P. Zheng and A. Aravkin. Fast methods for nonsmooth nonconvex
minimization. ArXiv e-prints, Feb. 2018.

[46] P. Zheng, T. Askham, S. L. Brunton, J. N. Kutz, and A. Y. Aravkin. A
Unified Framework for Sparse Relaxed Regularized Regression: SR3.
ArXiv e-prints, July 2018.

