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Abstract. We develop a trust-region method for minimizing the sum of a smooth term f and
a nonsmooth term h, both of which can be nonconvex. Each iteration of our method minimizes
a possibly nonconvex model of f + h in a trust region. The model coincides with f + h in value
and subdifferential at the center. We establish global convergence to a first-order stationary point
when f satisfies a smoothness condition that holds, in particular, when it has Lipschitz-continuous
gradient, and h is proper and lower semi-continuous. The model of h is required to be proper,
lower-semi-continuous and prox-bounded. Under these weak assumptions, we establish a worst-case

O(1/ϵ
2
) iteration complexity bound that matches the best known complexity bound of standard

trust-region methods for smooth optimization. We detail a special instance, named TR-PG, in which
we use a limited-memory quasi-Newton model of f and compute a step with the proximal gradient
method, resulting in a practical proximal quasi-Newton method. We establish similar convergence
properties and complexity bound for a quadratic regularization variant, named R2, and provide an
interpretation as a proximal gradient method with adaptive step size for nonconvex problems. R2 may
also be used to compute steps inside the trust-region method, resulting in an implementation named
TR-R2. We describe our Julia implementations and report numerical results on inverse problems from
sparse optimization and signal processing. Both TR-PG and TR-R2 exhibit promising performance
and compare favorably with two linesearch proximal quasi-Newton methods based on convex models.

Key words. Nonsmooth optimization, nonconvex optimization, composite optimization, trust-
region methods, quasi-Newton methods, proximal gradient method, proximal quasi-Newton method.
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1. Introduction. We consider the problem class

(1.1) minimize
x

f(x) + h(x),

where f : Rn → R is continuously differentiable, h : Rn → R ∪ {+∞} is proper
and lower semi-continuous, and both may be nonconvex. Smooth and nonsmooth
optimization problems are special cases corresponding to h := 0 and f := 0, respectively.
Certain authors [9, 23] refer to (1.1) as a composite problem. We use instead the term
nonsmooth regularized to differentiate with problems where f = 0 and h(x) = g(c(x)),
where g is nonsmooth and c is smooth, which is indeed the composition of two functions.
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In practice, h is often a regularizer designed to promote desirable properties in solutions,
such as sparsity. The class (1.1) captures the natural structure of a wide range of
problems; problems with simple constraints, exact penalty formulations, basis selection
problems with both convex [40, 41] and nonconvex [2, 6, 46] regularization, and more
general inverse and learning problems [1, 7, 10].

We describe a trust-region method for (1.1) in which steps are computed by
approximately minimizing simpler nonsmooth iteration-dependent models inside a
trust region defined by an arbitrary norm. In practice, the norm is chosen based on
the nonsmooth term in the model and the tractability of the step-finding subproblem,
which is not required to be convex. Our analysis hinges on the observation that in
the nonsmooth context, the first step of the proximal gradient method is the right
generalization of the gradient in smooth optimization. We establish global convergence
in terms of an optimality measure describing the decrease achievable in the model by a
single step of the proximal gradient method inside the trust-region. We also establish
a worst-case complexity bound of O(1/ϵ2) iterations to bring this optimality measure
below a tolerance 0 < ϵ < 1. Others [9, 20] have observed that it is possible to devise
trust-region methods for regularized optimization with complexity equivalent to that
for smooth optimization. However, past research typically assumes that h is either
globally Lipschitz continuous and/or convex.

We also revisit a quadratic regularization method, and establish similar conver-
gence properties and same worst-case compexity under the same assumptions. Our
description highlights the connection between the quadratic regularization method and
the standard proximal gradient method. The former may be seen as an implementation
of the latter with adaptive step size.

We provide implementation details and illustrate the performance of an instance
where the trust-region model is the sum of a limited-memory quasi-Newton, pos-
sibly nonconvex, approximation of f with a nonsmooth model of h and various
choices of the trust-region norm. Our trust-region algorithm exhibits promising per-
formance and compares favorably with linesearch proximal quasi-Newton methods
based on convex models [38, 39]. Our open source implementations are available from
github.com/UW-AMO/TRNC as packages in the emerging Julia programing language [5].

As far as we can tell from the literature, the method described in the present
paper is the first trust-region method for the fully nonconvex nonsmooth regularized
problem. Our approach offers flexibility in the choice of the norm used to define the
trust-region, provided an efficient procedure is known to solve the subproblem. We
show that such procedures are easily obtained in a number of applied scenarios.

Related research. We focus on (1.1) and do not provide an extensive review of
approaches for smooth optimization. Conn et al. [11] cover trust-region methods for
smooth optimization thoroughly, as well as a number of select generalizations, and we
refer the reader to their comprehensive treatment for background.

Yuan [43] formulates conditions for convergence of trust-region methods for convex-
composite objectives, i.e., g(c(x)) where c is continuously differentiable and g is convex.
In particular, he considers models of the form s 7→ g(c(x) + ∇c(x)s), that are relevant
to exact penalty methods for constrained optimization, and that are a special case of
the models we consider.

Dennis et al. [14] develop convergence properties of trust-region methods for
the case where f = 0 and h is Lipschitz continuous. Their analysis is based on a
generalization of the concept of Cauchy point in terms of Clarke directional derivatives,
but they do not provide an approach to solve the typically nonsmooth subproblem.
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Kim et al. [22] analyze a trust-region method for (1.1) when f is convex and h is
continuous and convex with assumptions based on those of Dennis et al. [14]. Their

model around a current x has the form f(x) +∇f(x)
T
s+ 1

2α∥s∥
2 + h(x+ s), where α

is a Barzilai-Borwein step length safeguarded to stay sufficiently positive and bounded.
By contrast, our approach allows general quadratic models, possibly indefinite, and
explicitly accounts for the trust-region constraint in the subproblem by devising
specialized proximal operators.

Qi and Sun [33] propose a trust-region method inspired by that of Dennis et al.
[14] for the case where f = 0 and h is locally Lipschitz continuous with bounded
level sets. They establish convergence under the further assumption that the models
are [0, 1]-subhomogeneous. Mart́ınez and Moretti [27] employ similar assumptions to
generalize the approach to problems with linear constraints.

Cartis et al. [9] consider (1.1) where h is convex and globally Lipschitz continuous.
They analyze both a trust-region algorithm and a quadratic regularization variant,
develop convergence and iteration complexity results, but do not provide guidance
on how to compute steps in practice. Their analysis revolves around properties of a
stationarity measure that are strongly anchored to the convexity assumption. The
algorithms that we develop below are most similar to theirs but rest upon significantly
weaker assumptions and concrete subproblem solvers. Grapiglia et al. [20] detail a
unified convergence theory for smooth optimization that has trust-region methods as
a special case. They also generalize the results of [9] but focus on objectives of the
form f(x) + g(c(x)) where f and c are smooth and g is convex and globally Lipschitz.

Lee et al. [23] fully explore the global and fast local convergence properties of exact
and inexact proximal Newton and quasi-Newton methods for the case where both f
and h are convex. They show that those methods inherit all the desired properties of
their counterparts in smooth optimization.

Bolte et al. [7] present a proximal alternating method for objectives of the form
g(x) + Q(x, y) + h(y) where g and h are proper and lower semi-continuous and the
coupling function Q is continuously differentiable. Their setting has (1.1) as a special
case. They establish convergence under the Kurdyka- Lojasiewicz assumption and
provide a general recipe for algorithmic convergence under such an assumption.

Li and Lin [24] consider monotone and non-monotone accelerations of the proximal
gradient method for possibly nonconvex f and h. They establish global convergence
under the assumptions that f has a Lipschitz continuous gradient, h is proper and
lower semi-continuous, and that f + h is coercive. This leads to a sublinear iteration
complexity bound when a Kurdyka- Lojasiewicz condition holds. Boţ et al. [8] employ
an inertial acceleration strategy which converges under the assumptions that h is
bounded below and possesses a Kurdyka- Lojasiewicz condition.

Stella et al. [38] initially devised PANOC, a linesearch quasi-Newton method
for (1.1) with limited-memory BFGS Hessian approximations, for model predictive
control. PANOC assumes that the objective has the form f(x)+h1(x)+h2(c(x)), where
f and c are smooth, h1 is nonsmooth and may be nonconvex, and h2 is nonsmooth
and convex. Themelis et al. [39] develop ZeroFPR, a nonmonotone linesearch proximal
quasi-Newton method for (1.1) based on the concept of forward-backward envelope.
ZeroFPR converges under a Kurdyka- Lojasiewicz assumption and enjoys the fast local
convergence properties of quasi-Newton methods for smooth optimization when a
Dennis-Moré condition holds.

Notation. Sets are represented by calligraphic letters. The cardinality of set S
is represented by |S|. We use ∥ · ∥ to denote a generic norm on Rn. The symbols ν,
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λ, σ and ∆ are scalars. B(0,∆) is the ball centered at 0 with radius ∆ > 0 defined
by a norm that should be clear from the context. We use the shorthands B = B(0, 1)
and ∆B = B(0,∆). When necessary, we write Bp to indicate that the ℓp-norm is
used. Functional symbols f , g, h, as well as ϕ, φ and ψ are used for functions. χ(·;A)
represents the indicator function of A ⊆ Rn. In particular, the indicator of B(0,∆) is
denoted χ(·; ∆B) or just χ(·; ∆) when the norm is clear from the context. We use the
alternative notation χ(·; ∆Bp) to emphasize that the ℓp-norm is used to define the ball.
If A ⊆ Rn and x ∈ Rn, dist(x;A) = inf{∥a − x∥ | a ∈ A} is the Euclidean distance
from x to A. If A is closed and convex, projA(x) denotes the unique projection of
x into A, i.e., {projA(x)} = argmin{∥a− x∥ | a ∈ A}. Finally, j and k are iteration
counters.

Roadmap. The paper proceeds as follows. In section 2, we gather preliminary
concepts for trust-region methods and variational analysis used in the theory. section 3
develops the general trust-region method for (1.1), including the new Algorithm 3.1,
and introduces several innovations that yield the main results. In section 4, we
explain how to compute a trust-region step based on a proximal quasi-Newton model.
New relevant proximal operators needed to implement the trust-region method are
studied in section 5. A quadratic regularization variant of the trust-region algorithm
together with its convergence analysis are presented in section 6. Numerical results
and experiments are in section 7. We end with a brief discussion in section 8.

2. Preliminaries.

2.1. Smooth context. When f ∈ C1 and h = 0 in (1.1), trust-region methods
are known for strong convergence properties and favorable numerical performance on
both small and large-scale problems. At an iterate xk, they compute a step sk as an
approximate solution of

minimize
s

mk(s;xk) subject to ∥s∥ ≤ ∆k,

where mk(·;xk) is a model of f about xk, ∥ · ∥ is a norm and ∆k > 0 is the trust-region
radius. The predicted decrease mk(0;xk) − mk(sk;xk) is compared to the actual
decrease (f + h)(xk) − (f + h)(xk + sk) to decide whether sk should be accepted or
rejected. If sk is accepted, the iteration is successful ; otherwise it is unsuccessful.
Typically, mk(·;xk) is a quadratic expansion of f about xk and the Euclidean norm is
used in the trust region. The Euclidean norm is favored because efficient numerical
schemes are known for the quadratic subproblem, which can be solved either exactly
by way of the method of Moré and Sorensen [28] or approximately by way of the
truncated conjugate gradient method of Steihaug [37]. See [11] for more information.

2.2. Nonsmooth context. We denote R = R ∪ {±∞}. We call h : Rn → R

proper if h(x) > −∞ for all x and h(x) < ∞ for at least one x, and lower semi-
continuous, or lsc, at x̄ if lim infx→x̄ h(x) = h(x̄). We say that h is (lower-)level
bounded if all its level sets are bounded. If h is proper, lsc and level bounded, then
argmin h is nonempty and compact [36, Theorem 1.9].

Definition 2.1. For a proper lsc function h : Rn → R and a parameter ν > 0,
the Moreau envelope eνh and the proximal mapping proxνh are defined by

eνh(x) := inf
w

1
2ν

−1∥w − x∥2 + h(w) = ν−1 inf
w

1
2∥w − x∥2 + νh(w),(2.1a)

prox
νh

(x) := argmin
w

1
2ν

−1∥w − x∥2 + h(w) = argmin
w

1
2∥w − x∥2 + νh(w).(2.1b)
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Under certain assumptions, including strong convexity of the objective of (2.1b), the
set proxνh(x) is a singleton. However, in general, the set-valued mapping proxνh may
be empty or contain multiple elements. For a given h, the range of parameter values for
which the Moreau envelope assumes a finite value is given by the following definition.

Definition 2.2. The proper lsc function h : Rn → R is prox-bounded if there
exists ν > 0 and at least one x ∈ Rn such that eνh(x) > −∞. The threshold of
prox-boundedness νh of h is the supremum of all such ν > 0.

If h is level bounded, then so is w 7→ 1
2ν

−1∥w − x∥2 + h(w) for all x ∈ Rn and
all ν > 0, so eνh(x) > −∞ [36, Theorem 1.9] and h is prox-bounded. The following
result summarizes some properties of (2.1a)–(2.1b). Further properties appear in [36,
Theorem 1.25].

Proposition 2.3. Let h : Rn → R be proper lsc and prox-bounded with threshold
νh > 0. For every ν ∈ (0, νh) and all x ∈ Rn,

1. proxνh(x) is nonempty and compact;
2. eνh(x) depends continuously on (ν, x) and eνh(x) ↗ h(x) as ν ↘ 0.

2.3. Optimality conditions. We use the following notions of subgradient and
subdifferential [36, Definition 8.3].

Definition 2.4 (Limiting subdifferential). Consider ϕ : Rn → R and x̄ ∈ Rn
with ϕ(x̄) <∞. We say that v ∈ Rn is a regular subgradient of ϕ at x̄, and we write

v ∈ ∂̂ϕ(x̄) if

lim inf
x→x̄

ϕ(x) − ϕ(x̄) − vT (x− x̄)

∥x− x̄∥ ≥ 0.

The set of regular subgradients is also called the Fréchet subdifferential. We say that
v is a general subgradient of ϕ at x̄, and we write v ∈ ∂ϕ(x̄), if there are sequences

{xk} and {vk} such that xk → x̄, ϕ(xk) → ϕ(x̄), vk ∈ ∂̂ϕ(xk) and vk → v. The set of
general subgradients is called the limiting subdifferential.

If ϕ is convex, the Fréchet and limiting subdifferentials coincide with the subdif-
ferential of convex analysis. If ϕ is differentiable at x, ∂ϕ(x) = {∇ϕ(x)} and if ϕ is

continuously differentiable at x, ∂̂ϕ(x) = {∇ϕ(x)} [36, Section 8.8].
In the following, we do not make use of the precise definition of the relevant

subdifferential, but merely rely on the following criticality property.

Proposition 2.5 (36, Theorem 10.1). If ϕ : Rn → R is proper and has a

local minimum at x̄, then 0 ∈ ∂̂ϕ(x̄) ⊆ ∂ϕ(x̄). If ϕ is convex, the latter condition is
also sufficient for x̄ to be a global minimum. If ϕ = f + h where f is continuously
differentiable on a neighborhood of x̄ and h is finite at x̄, then ∂ϕ(x̄) = ∇f(x̄) + ∂h(x̄).

2.4. The proximal gradient method. Consider the generic nonsmooth regu-
larized problem

(2.2) minimize
s

φ(s) + ψ(s),

where φ is continuously differentiable and ψ is proper, lower semi-continuous and
prox-bounded. The notation φ and ψ is intentionally different from (1.1) and will be
reused to denote models of f and h in section 3.

A natural method to solve (2.2) that generalizes the gradient method of smooth
optimization is the proximal gradient method [3, 25]. When initialized from s0 ∈ Rn
Cahier du GERAD G-2021-12 Commit (None) by (None) on (None)
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where ψ is finite, it generates iterates according to

(2.3) sj+1 ∈ prox
νψ

(sj − ν∇φ(sj)), j ≥ 0,

where ν > 0 is a step size. If ψ is the indicator of a closed convex set, the proximal
gradient method reduces to the projected gradient method.

The first-order optimality conditions of (2.3) are

(2.4) 0 ∈ sj+1 − sj + ν∇φ(sj) + ν∂ψ(sj+1).

The proximal literature primarily focuses on the generalized gradient

(2.5) Gν(s) := ν−1(s− prox
νψ

(s− ν∇φ(s))),

with Gν(0) = ∇φ(0) in the case of smooth optimization. The following result gives
conditions under which the proximal gradient method is monotonic.

Proposition 2.6 (7, Lemma 2). Let φ be continuously differentiable, ∇φ be
Lipschitz continuous with constant L > 0 and ψ be proper, lsc and bounded below. For
any 0 < ν < 1/L, any s0 where ψ is finite, the iteration (2.3) is such that

(φ+ ψ)(sj+1) ≤ (φ+ ψ)(sj) − 1
2 (ν−1 − L)∥sj+1 − sj∥2, j ≥ 0.

It is possible to remove the assumption that ψ is bounded below from Proposi-
tion 2.6 and replace it with the weaker assumption that ψ is prox-bounded and that ν
is chosen smaller than the threshold of prox-boundedness of ψ.

In the smooth case, where ψ = 0, we have s1 = −ν∇φ(s0) and the decrease is

(2.6) φ(s1;x) ≤ φ(s0) − 1
2ν

2(ν−1 − L)∥∇φ(s0)∥2.

3. Trust-region methods for nonsmooth regularized optimization. In this
section, we develop and analyze a general trust-region method for (1.1). Section 3.1
examines properties of trust-region subproblems. Section 3.2 discusses optimality
measures, and highlights the role of the prox-gradient step in quantifying descent in
the general context of (1.1). In Section 3.3, we present the trust-region approach, and
highlight key innovations that make it possible to obtain the convergence results and
complexity analysis presented in Section 3.4.

3.1. Properties of trust-region subproblems. For fixed x ∈ Rn, consider the
parametric problem and its optimal set

p(∆;x) := minimize
s

φ(s;x) + ψ(s;x) + χ(s; ∆),(3.1a)

P (∆;x) := argmin
s

φ(s;x) + ψ(s;x) + χ(s; ∆),(3.1b)

where φ(s;x) ≈ f(x+ s), ψ(s;x) ≈ h(x+ s), χ(s; ∆) is the indicator function of the
trust region ∆B and ∆ > 0. The form of (3.1) is representative of a trust-region
subproblem for (1.1) in which f and h are modeled separately and the trust-region
constraint appears implicitly via an indicator function.

We make the following additional assumption.

Model Assumption 3.1. For any x ∈ Rn, φ(·;x) is continuously differentiable,
ψ(·;x) is proper and lsc.

Commit (None) by (None) on (None) Cahier du GERAD G-2021-12
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By Proposition 2.5,

s ∈ P (∆;x) =⇒ 0 ∈ ∇φ(s;x) + ∂(ψ(·;x) + χ(·; ∆))(s).

The following result summarizes properties of (3.1).

Proposition 3.1. Let Model Assumption 3.1 be satisfied. If we define p(0;x) :=
φ(0;x) + ψ(0;x) and P (0;x) = {0}, the domain of p(·;x) and P (·;x) is {∆ | ∆ ≥ 0}.
In addition,

1. p(·;x) is proper lsc and for each ∆ ≥ 0, P (∆;x) is nonempty and compact;
2. if {∆k} → ∆̄ ≥ 0 in such a way that {p(∆k;x)} → p(∆̄;x), and for each k,
sk ∈ P (∆k;x), then {sk} is bounded and all its limit points are in P (∆̄;x);

3. if φ(·;x) + ψ(·;x) is strictly convex, P (∆;x) is single-valued;
4. if ∆̄ > 0 and there exists s̄ ∈ P (∆̄;x) such that ∥s̄∥ < ∆̄, then p(·;x) is

continuous at ∆̄ and {p(∆k;x)} → p(∆̄;x) holds in part 2.

Proof. Model Assumption 3.1 and compactness of the trust region ensure that
the objective of (3.1a) is always level-bounded in s locally uniformly in ∆ [36, Defini-
tion 1.16] because for any ∆̄ > 0 and ϵ > 0, and for any ∆ ∈ (∆̄− ϵ, ∆̄+ ϵ) with ∆ ≥ 0,
the level sets of φ(·;x) + ψ(·;x) + χ(·; ∆) are contained in ∆B ⊆ (∆̄ + ϵ)B. Parts 1–2
follow by Rockafellar and Wets [36], Theorems 1.17 and 7.41. Part 3 follows from
Rockafellar and Wets [36, Exercice 7.45]. Part 4 follows by noting that if ∥s̄∥ < ∆̄,
then φ(s̄;x) + ψ(s̄;x) + χ(s̄; ∆) is continuous in ∆ in a neighborhood of ∆̄; the rest
follows from Rockafellar and Wets [36, Theorem 1.17c].

It is not necessary to assume that ψ(·;x) is prox-bounded in Model Assumption 3.1
because under the assumptions stated and compactness of the trust region, the objective
of (3.1a) is necessarily bounded below, and therefore prox-bounded. Proposition 3.1
allows us to think of how approximate solutions “truncated” by a trust-region constraint
approach s̄ as the trust-region radius increases. Indeed, we may choose any ∆̄ > ∥s̄∥ in
parts 2 and 4. When ψ(·;x) = 0 and φ(·;x) is quadratic and strictly convex, the graph
of P (·;x) is known to be a smooth curve such that P (0;x) = {xk}, that is tangential
to −∇f(xk) at ∆ = 0 and such that lim∆→∞ P (∆;x) contains the Newton step as its
only element. This observation gives rise to several numerical methods to approximate
the solution of (3.1), including the dogleg [32] and double dogleg methods [15].

3.2. Optimality measures. In this section, we seek a convenient way of as-
sessing whether a given x is first-order critical for (1.1) based on the trust-region
subproblem (3.1). We begin with the following result.

Proposition 3.2. Let Model Assumption 3.1 be satisfied. Assume in addition that
∇sφ(0;x) = ∇f(x), ∂ψ(0;x) = ∂h(x), and let ∆ > 0. Then 0 ∈ P (∆;x) =⇒ s = 0 is
first-order stationary for (3.1) ⇐⇒ x is first-order stationary for (1.1).

Proof. By definition, x is first-order stationary if and only if 0 ∈ ∇f(x) + ∂h(x) =
∇sφ(0;x) + ∂ψ(0;x). But ψ(0;x) = ψ(0;x) + χ(0; ∆) and ∂(ψ(·;x) + χ(·; ∆))(0) =
∂ψ(0;x)+∂χ(0; ∆) because ∂χ(0; ∆) = {0}. Thus we obtain 0 ∈ ∇sφ(0;x)+∂(ψ(·;x)+
χ(·; ∆))(0), i.e., s = 0 is first-order stationary for (3.1).

Proposition 3.2 suggests we may use an element of P (∆;x) as first-order optimality
measure for any ∆ > 0, such as for example ∥g(∆;x)∥, where g(∆;x) is the least-norm
element of P (∆;x). However, the dependency on ∆ is inconvenient. In order to
circumvent this difficulty, we focus our attention temporarily on the choice

(3.2)
φ(s;x) = f(x) + ∇f(x)

T
s+ 1

2ν
−1∥s∥2

= 1
2ν

−1∥s+ ν∇f(x)∥2 + f(x) − 1
2ν∥∇f(x)∥2,

Cahier du GERAD G-2021-12 Commit (None) by (None) on (None)
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where ν > 0 is fixed, so that for any x ∈ Rn,

p(∆;x, ν) = eνψ(·;x)+χ(·;∆)(−ν∇f(x)) + f(x) − 1
2ν∥∇f(x)∥2,(3.3a)

P (∆;x, ν) = prox
νψ(·;x)+χ(·;∆)

(−ν∇f(x)),(3.3b)

and p only differs from a Moreau envelope by a constant. The above choice of φ(·;x)
allows us to derive a convenient, computable optimality measure, and to generalize the
concept of decrease along the steepest descent direction, also known as Cauchy decrease,
which is so fundamental to the convergence analysis of computational methods for
smooth optimization.

In the special case where ψ(·;x) = 0, Proposition 3.1 part 3 indicates that
P (∆;x, ν) is single valued, and its only element is the projection of −ν∇f(x) into
the trust region. On the other hand, p(∆;x, ν) measures the decrease of (3.2) in
the direction of the projected gradient. Cartis et al. [9] study the special case where
h(x) = g(c(x)) with g convex and globally Lipschitz continuous, and c smooth. In

lieu of (3.3a), they minimize f(x) + ∇f(x)
T
s+ g(c(x) + ∇c(x)

T
s) in the trust region,

which is analogous.
Crucially, (3.3) describes the first step of the proximal gradient method with step

size ν applied to (3.1a) where φ(·;x) is as in (3.2) from s = 0 with a trust region of
radius ∆. In the notation of section 2.4, φ is φ(·;x) and ψ is ψ(·;x) +χ(·; ∆). If ψ(·;x)
is finite at s0 = 0, the first step of the proximal gradient method is

(3.4)

s1 ∈ argmin
s

1
2ν

−1∥s+ ν∇f(x)∥2 + ψ(s;x) + χ(s; ∆)

= argmin
s

f(x) + ∇f(x)
T
s+ 1

2ν
−1∥s∥2 + ψ(s;x) + χ(s; ∆),

and yields the decrease

(3.5) (φ+ ψ)(s1;x) ≤ (f + h)(x) − 1
2 (ν−1 − L)∥s1∥2

Moreover, s1 is also the first step of the proximal-gradient method applied to (3.1a)
where φ(·;x) is any model of f about x that is differentiable at s = 0 with ∇sφ(0;x) =
∇f(x), and, in particular, any quadratic expansion of f about x. In the sequel, we
use s1 as the appropriate generalization to the nonsmooth context of the projected
gradient step, which allows us to derive an adequate optimality measure.

Let

(3.6) ξ(∆;x, ν) := f(x) + h(x) − p(∆;x, ν),

where p(∆;x, ν) is defined in (3.3a). In view of the above, ξ(∆;x, ν) measures the
decrease predicted by the first step of the proximal gradient method applied to (3.1a)
from s = 0 with trust-region radius ∆ and step length ν > 0, where φ(·;x) is any
model of f about x that is differentiable at s = 0 with ∇sφ(0;x) = ∇f(x).

Assume from now on that φ(0;x) = f(x) and ψ(0;x) = h(x). Because p(∆;x, ν) ≤
φ(0;x) + ψ(0;x) + χ(0; ∆) = f(x) + h(x), we necessarily have ξ(∆;x, ν) ≥ 0.

Examples of models of f satisfying the above assumptions include Taylor expansions
of f about x, and in particular quadratic models f(x) + ∇f(x)

T
s + 1

2s
TBs where

B = BT . The most straightforward example of a model of h satisfying the above
is ψ(s;x) = h(x + s). If h(x) = g(c(x)), where g : Rm → R is proper, lsc and
level-bounded, and c : Rn → R

m is continuously differentiable, other possible models
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include ψ(s;x) = g(c(x) + ∇c(x)
T
s) and ψ(s;x) = g(c(x) + ∇c(x)

T
s+

∑m
i=1 s

TBis),

where each Bi = BTi .
The following result allows us to rely on the computable values p(∆;x, ν) and

ξ(∆;x, ν) to assess stationarity.

Proposition 3.3. Let Model Assumption 3.1 be satisfied where φ(0;x) = f(x) and
∇sφ(0;x) = ∇f(x). Assume furthermore that ψ(0;x) = h(x) and ∂ψ(0;x) = ∂h(x),
and let ∆ > 0. Then, ξ(∆;x, ν) = 0 ⇐⇒ 0 ∈ P (∆;x, ν) =⇒ x is first-order stationary
for (1.1).

Proof. ξ(∆;x, ν) = 0 if and only if p(∆;x, ν) = f(x) + h(x) = φ(0;x) + ψ(0;x) +
χ(0; ∆), which occurs if and only if 0 ∈ P (∆;x, ν). Proposition 3.2 then implies that
x is first-order stationary for (1.1).

3.3. A trust-region algorithm. We focus on the solution of (1.1) under Problem
Assumption 3.1.

Problem Assumption 3.1. In (1.1), f ∈ C1(Rn), and h is proper and lsc.

At iteration k, we construct a model mk(s;xk) := φ(s;xk) + ψ(s;xk) ≈ f(xk +
s) + h(xk + s) and we approximately solve

(3.7) minimize
s

mk(s;xk) subject to ∥s∥ ≤ ∆k

by computing a step sk required to result in at least a fraction of the decrease achieved
with one step of the proximal gradient method. Step Assumption 3.1 formalizes our
requirement.

Step Assumption 3.1. There exists κm > 0 and κmdc ∈ (0, 1) such that for all
k, ∥sk∥ ≤ ∆k and

|f(xk + sk) + h(xk + sk) −mk(sk;xk)| ≤ κm∥sk∥2,(3.8a)

mk(0;xk) −mk(sk;xk) ≥ κmdcξ(∆k;xk, νk),(3.8b)

where mk is defined above and ξ(∆k;xk, νk) is defined in (3.6).

Condition (3.8a) is certainly satisfied if both f and φ are twice continuously
differentiable with bounded second derivatives, and ψ(s;xk) := h(xk + s). It also
holds when h(x) = g(c(x)) where c : Rn → R

m has Lipschitz-continuous Jacobian
and g : Rm → R

n is Lipschitz continuous. Such a situation arises when (1.1) results
from penalizing infeasibility in the process of solving a smooth constrained problem.
A useful model is then ψ(s;xk) := g(c(xk) + ∇c(xk)

T
s). If L > 0 is the Lipschitz

constant of g and M > 0 that of the Jacobian of c, we have

|h(xk + s) − ψ(s;xk)| ≤ L∥c(xk + s) − c(xk) −∇c(xk)
T
s∥ ≤ 1

2LM∥s∥2,
for all s, and (3.8a) is satisfied.

In order to develop a convergence analysis, we further assume that the gradient of
φ(·;xk) is Lipschitz continuous, which is satisfied, for instance, in the case of a quadratic
model. It is not necessary to assume at this point that those Lipschitz constants are
uniformly bounded; we will make such an assumption when needed. We gather the
assumptions on the model from sections 3.1 and 3.2 in Model Assumption 3.2.

Model Assumption 3.2. For any x ∈ Rn, φ(·;x) is continuously differentiable
with φ(0;x) = f(x) and ∇sφ(0;x) = ∇f(x). In addition, ∇sφ(·;x) is Lipschitz
continuous with constant L(x) for all x ∈ Rn. Finally, ψ(·;x) is proper, lsc, and
satisfies ψ(0;x) = h(x) and ∂ψ(0;x) = ∂h(x).
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The complete process is formalized in Algorithm 3.1, which differs from a traditional
trust-region algorithm in a few respects. First, each iteration begins with the choice of
a steplength νk > 0 for the proximal-gradient method. Steplength νk must be below
1/L(xk) to ensure descent; in addition, we connect νk explicitly to ∆k for a reason
that becomes apparent in Theorem 3.4. Second, a step computation occurs in two
phases. In the first phase, we compute the first step sk,1 of the proximal-gradient
method applied to our model with trust-region radius ∆k. Step sk,1 is an analog
of the scaled projected gradient for nonsmooth regularized problems. In the second
phase, we continue the proximal-gradient iterations from sk,1 but possibly modify the
trust-region radius so it does not exceed β∥sk,1∥ for a prescribed β ≥ 1. This choice is
similar in spirit to the analysis of Curtis et al. [12] for smooth problems, who set the
radius to be proportional to the gradient norm. More precisely, if ∥sk,1∥ < ∆k, we
explore a trust region of radius β∥sk,1∥ ≥ ∥sk,1∥. Because the constraint ∥s∥ ≤ ∆k

is inactive at sk,1, the first step of the proximal gradient method computed in the
updated trust region remains sk,1, so that subsequent proximal gradient iterations
will result in further decrease and the ultimate step sk will satisfy (3.8b). If, on the
other hand, ∥sk,1∥ = ∆k, the first step of the proximal gradient method computed in a
larger trust region might differ from sk,1, which would jeopardize satisfaction of (3.8b).
In order to preserve (3.8b), we leave ∆k unchanged.

A final difference with traditional trust-region methods is that h and/or ψ(·;x)
can take the value +∞. In accordance with [36], we employ extended arithmetic rules
in which +∞· 0 = 0 · (+∞) = +∞/(+∞) := 0. Thus if h(xk + sk) = ψ(sk;xk) = +∞,
we set ρk := 0 at step 9 of Algorithm 3.1.

Algorithm 3.1 Nonsmooth Regularized Trust-Region Algorithm.

1: Choose constants

0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1 < γ3 ≤ γ4 and α > 0, β ≥ 1.

2: Choose x0 ∈ Rn where h is finite, ∆0 > 0, compute f(x0) + h(x0).
3: for k = 0, 1, . . . do
4: Choose 0 < νk ≤ 1/(L(xk) + α−1∆−1

k ).
5: Define mk(s;xk) := φ(s;xk) + ψ(s;xk) satisfying Model Assumption 3.2.
6: Define mν

k(s;xk) := φν(s;xk) + ψ(s;xk) where φν(·;xk) is as in (3.2).
7: Compute sk,1 as the solution of (3.7) with model mν

k(s;xk).
8: Compute an approximate solution sk of (3.7) with model mk(s;xk) satisfying

Step Assumption 3.1 and such that ∥sk∥ ≤ min(∆k, β∥sk,1∥).
9: Compute the ratio

ρk :=
f(xk) + h(xk) − (f(xk + sk) + h(xk + sk))

mk(0;xk) −mk(sk;xk)
.

10: If ρk ≥ η1, set xk+1 = xk + sk. Otherwise, set xk+1 = xk.
11: Update the trust-region radius according to

∆k+1 ∈

 [γ3∆k, γ4∆k] if ρk ≥ η2, (very successful iteration)
[γ2∆k, ∆k] if η1 ≤ ρk < η2, (successful iteration)
[γ1∆k, γ2∆k] if ρk < η1 (unsuccessful iteration).

12: end for

Commit (None) by (None) on (None) Cahier du GERAD G-2021-12



[toc] 11

3.4. Convergence analysis and iteration complexity. Our first result states
that a successful step is guaranteed provided the trust-region radius is small enough.

Theorem 3.4. Let Model Assumption 3.2 and Step Assumption 3.1 be satisfied
and let

(3.9) ∆succ :=
κmdc(1 − η2)

2κmαβ
2 > 0.

If xk is not first-order stationary and ∆k ≤ ∆succ, then iteration k is very successful
and ∆k+1 ≥ ∆k.

Proof. Because xk is not first-order stationary, sk,1 ̸= 0 and sk ̸= 0. Note first
that (3.5), (3.6) and Model Assumption 3.2 give

ξ(∆k;xk, νk) ≥ (f + h)(xk) − (φ+ ψ)(s1;xk) ≥ 1
2 (ν−1

k − L(xk))∥sk,1∥2.

Line 4 of Algorithm 3.1 implies in turn that ν−1
k − L(xk) ≥ α−1∆−1

k , so that

ξ(∆k;xk, νk) ≥ 1
2α

−1∆−1
k ∥sk,1∥2.

Model Assumption 3.2 and Step Assumption 3.1 together with the bound ∥sk∥ ≤
β∥sk,1∥ yield

|ρk − 1| =

∣∣∣∣f(xk + sk) + h(xk + sk) −mk(sk;xk)

mk(0;xk) −mk(sk;xk)

∣∣∣∣
≤ κm∥sk∥2
κmdcξ(∆k;xk, νk)

≤ κmβ
2∥sk,1∥2

1
2α

−1∆−1
k ∥sk,1∥2

=
2κmαβ

2

κmdc

∆k.

Therefore, ∆k ≤ ∆succ implies ρk ≥ η2 and iteration k is very successful. The
trust-region update of Algorithm 3.1 ensures that ∆k+1 ≥ ∆k.

A careful examination of the proof of Theorem 3.4 reveals that the model adequacy
condition (3.8a) could be replaced with the weaker condition

(3.10) |f(xk + sk) + h(xk + sk) −mk(sk;xk)| ≤ κmβ
2∥sk,1∥2,

which encapsulates the step size and the trust-region radius simultaneously, and
suggests that sk,1 is the appropriate generalization of the projected gradient for
nonsmooth regularized optimization.

We are now in position to show that Algorithm 3.1 identifies a first-order critical
point. We first consider the case where there are finitely many successful iterations.

Theorem 3.5. Let Model Assumption 3.2 and Step Assumption 3.1 be satisfied.
If Algorithm 3.1 only generates finitely many successful iterations, then xk = x∗ for
all sufficiently large k and x∗ is first-order critical.

Proof. The proof mirrors that of Conn et al. [11, Theorem 6.4.4]. Under the
assumptions given, there exists k0 ∈ N such that all iterations k ≥ k0 are unsuccessful
and xk = xk0 = x∗. Assume by contradiction that x∗ is not first-order critical. The
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mechanism of Algorithm 3.1 ensures that ∆k decreases on unsuccessful iterations. Thus,
there must be k1 ≥ k0 such that ∆k ≤ ∆succ, where ∆succ is defined in Theorem 3.4,
which ensures that iteration k1 is successful and contradicts our assumption.

We now turn to the case where there are infinitely many successful iterations and
show that the objective is either unbounded below or a measure of criticality converges
to zero. The mechanism of Algorithm 3.1 and Theorem 3.4 together ensure that

(3.11) ∆k ≥ ∆min for all k ∈ N where ∆min := min(∆0, γ1∆succ) > 0.

Thus, by definition of ξ(·;xk, νk) and (3.11), we have

(3.12) ξ(∆k;xk, νk) ≥ ξ(∆min;xk, νk) for all k ∈ N.

Following this last observation and in view of Proposition 3.3 and (2.6), we define

ν−1
k ξ(∆min;xk, νk)

1
2 as our measure of criticality. Observe the similarity between this

measure and ∥Gνk(0)∥ defined in (2.5).

Our objective is to establish that lim inf ν−1
k ξ(∆min;xk, νk) = 0 provided f + h is

bounded below. While doing so, we also establish a complexity result.
Let ϵ > 0 be a stopping tolerance set by the user. We are interested in determining

the smallest iteration number k(ϵ) at which we achieve the first-order optimality
condition

(3.13) ν−1
k ξ(∆min;xk, νk)

1
2 ≤ ϵ (0 < ϵ < 1).

We denote

S := {k ∈ N | ρk ≥ η1},(3.14a)

S(ϵ) := {k ∈ S | k < k(ϵ)},(3.14b)

U(ϵ) := {k ∈ N | k ̸∈ S and k < k(ϵ)},(3.14c)

respectively the set of all successful iterations, the set of successful iterations for
which (3.13) has not yet been attained, and the set of unsuccessful iterations be-
fore (3.13) is first attained.

We make the following additional assumption on the model.

Model Assumption 3.3. In Model Assumption 3.2, there exists L > 0 such that
0 < L(xk) ≤ L for all k ∈ N. In addition, we select νk at line 4 of Algorithm 3.1 in a
way that there exists νmin > 0 such that νk ≥ νmin for all k ∈ N.

We stress that it is not necessary to know the value of or estimate L; only to ensure
that such a constant exists, which may be achieved either by controling the norm of
quasi-Newton approximations [26] or employing exact Hessians and substituting one for
a bounded approximation when its norm is too large. Finally, in view of (3.11), there
exists νmin > 0 satisfying the assumption. For instance, choosing νk := 1/(L(xk) +
α−1∆−1

k ) at each iteration ensures that νk ≥ νmin := 1/(L+ α−1∆−1
min) > 0.

The following two results parallel the now-classic complexity analysis of Cartis
et al. [9] and references therein.

Lemma 3.6. Let Model Assumptions 3.2 and 3.3 and Step Assumption 3.1 be
satisfied. Assume there are infinitely many successful iterations and that f(xk) +
h(xk) ≥ (f + h)low for all k ∈ N. Then, for all ϵ ∈ (0, 1),

(3.15) |S(ϵ)| ≤ (f + h)(x0) − (f + h)low
η1κmdcν

2
minϵ

2 = O(ϵ−2).
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Proof. If k ∈ S(ϵ), Model Assumption 3.3 and Step Assumption 3.1 and (3.12)
imply

f(xk) + h(xk) − f(xk + sk) − h(xk + sk) ≥ η1(mk(0;xk) −mk(sk;xk))

≥ η1κmdcξ(∆k;xk, νk)

≥ η1κmdcξ(∆min;xk, νk)

≥ η1κmdcν
2
kϵ

2

≥ η1κmdcν
2
minϵ

2.

Because f + h is bounded below by (f + h)low, summing the above inequalities
over all k ∈ S(ϵ) yields

(f + h)(x0) − (f + h)low ≥
∑
k∈S(ϵ)

(f + h)(xk) − (f + h)(xk+1) ≥ |S(ϵ)|η1κmdcν
2
minϵ

2,

which establishes (3.15).

In order to derive a similar bound on the total number of iterations before (3.13)
is first attained, we need to bound the number of unsuccessful iterations.

Lemma 3.7. Under the assumptions of Lemma 3.6,

(3.16) |U(ϵ)| ≤ logγ2(∆min/∆0) + |S(ϵ)|| logγ2(γ4)| = O(ϵ−2).

Proof. Each unsuccessful iteration reduces the trust-region radius by a factor at
least γ2, while at each successful iteration, ∆k+1 ≤ γ4∆k. Thus if k(ϵ) − 1 is the
iteration index just before (3.13) occurs for the first time,

∆min ≤ ∆k(ϵ)−1 ≤ ∆0γ
|U(ϵ)|
2 γ

|S(ϵ)|
4 .

Taking logarithms on both sides and remembering that 0 < γ2 < 1 gives

|U(ϵ)| log(γ2) + |S(ϵ)| log(γ4) ≥ log(∆min/∆0),

and establishes (3.16).

Finally, the total number of iteration until (3.13) is attained is given in the next
result, which simply combines Lemma 3.6 and Lemma 3.7.

Theorem 3.8. Under the assumptions of Lemma 3.6,

(3.17) |S(ϵ)| + |U(ϵ)| = O(ϵ−2).

We use the update ∆k+1 ∈ [γ3∆k, γ4∆k] on very successful iterations but other
possibilities exist. For instance, it is common to set ∆k+1 = max(γ3∥sk∥, ∆k)
instead. Lemma 3.7 continues to hold because on successful iterations, ∆k+1 ≤
max(γ3∆k, ∆k) = γ3∆k.

Curtis et al. [12] establish a complexity bound of O(ϵ−2) by making ∆k proportional
to an optimality measure—in their context of smooth optimization, they choose the
gradient norm. Grapiglia et al. [20] study the convergence and complexity of a generic
algorithm that has trust-region methods as a special case and obtain the O(ϵ−2)
complexity bound under stronger smoothness assumptions than ours. Among others,
they establish a bound for regularized optimization but also require h to be convex and
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globally Lipschitz continuous. Curtis et al. [13] describe a nonstandard trust-region

algorithm with a stronger O(ϵ−3/2) complexity bound.
A straightforward consequence of Theorem 3.8 is that if f + h is bounded below,

a subsequence of the criticality measure converges to zero.

Corollary 3.9. Let Model Assumptions 3.2 and 3.3, and Step Assumption 3.1
be satisfied. If there are infinitely many successful iterations, then, either

lim
k→∞

f(xk) + h(xk) → −∞ or lim inf
k→∞

ν−1
k ξ(∆min;xk, νk)

1
2 = 0.

Proof. Follows directly from Theorem 3.8.

In order to give an interpretation of Corollary 3.9, consider (3.1) with ∆ =
∆min > 0 along with its value function p(∆min;x, ν), optimal set P (∆min;x, ν) and
the optimality measure ξ(∆min;x, ν), where (x, ν) now plays the role of the parameter.
Similar to Proposition 3.1, though with slightly stronger assumptions than Model
Assumption 3.1, we have the following result.

Proposition 3.10. Let Problem Assumption 3.1 be satisfied and consider (3.1)
with φ as in (3.2). Assume ψ is proper and lsc in the joint variables (s, x) and
ψ(s;x) + χ(s; ∆min) is level-bounded in s locally uniformly in x. Then, the domain of
p(∆min; ·, ·) and P (∆min; ·, ·) is Rn × {ν | ν > 0}. In addition,

1. p(∆min; ·, ·) is proper continuous and for all x ∈ Rn and ν > 0, P (∆min;x, ν)
is nonempty and compact. In addition, ξ(∆min; ·, ·) is proper lsc;

2. if {xk} → x̄ and {νk} → ν̄ > 0, and for each k, sk ∈ P (∆min;xk, νk), then
{sk} is bounded and all its limit points are in P (∆min; x̄, ν̄).

Proof. Because h is proper lsc, (3.6) implies that ξ(∆min; ·, ·) is proper whenever
p(∆min; ·, ·) is proper and is lsc whenever p(∆min; ·, ·) is continuous. The latter holds
because p(∆min; ·, ·) is the composition of ∇f , which is continuous, with the Moreau
envelope of ψ(·;x) + χ(·; ∆), and such Moreau envelope is continuous in (x, ν)—see,
[36, Theorem 1.25]. The rest follows by [36, Theorems 1.17 and 7.41].

By Corollary 3.9, if f + h is bounded below, there is an index set K such that

{ν−1
k ξ(∆min;xk, νk)

1
2 }K → 0. Assume that {(xk, νk)}K possesses a limit point and,

without loss of generality, that {(xk, νk)}K → (x̄, ν̄) with ν̄ > 0. That implies that
{ξ(∆min;xk, νk)}K → 0 because for all sufficiently large k,

ν−1
k ξ(∆min;xk, νk)

1
2 ≥ 1

2 ν̄
−1ξ(∆min;xk, νk)

1
2 ≥ 0.

Under the assumptions of Proposition 3.10, ξ(∆min; ·, ·) is lsc, which means exactly
that

0 = lim inf
k∈K

ξ(∆min;xk, νk) = ξ(∆min; x̄, ν̄),

so that x̄ is first-order critical.
It turns out that a stronger conclusion holds without further assumptions; the

following result implies that every limit point of {(xk, νk)} determines a first-order
critical point. The proof follows the logic of [11, Theorem 6.4.6] but is significantly
simpler due to the form of Step Assumption 3.1 and (3.12).

Theorem 3.11. Let Model Assumptions 3.2 and 3.3 and Step Assumption 3.1 be
satisfied. If there are infinitely many successful iterations,

lim
k→∞

f(xk) + h(xk) → −∞ or lim
k→∞

ν−1
k ξ(∆min;xk, νk)

1
2 = 0.
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Proof. If {ν−1
k ξ(∆min;xk, νk)

1
2 } ̸→ 0, there exist ϵ > 0 and an infinite set K ⊂ S

such that ν−1
k ξ(∆min;xk, νk)

1
2 ≥ ϵ for all k ∈ K. Because each k ∈ K is a successful

iteration, Step Assumption 3.1 and (3.12) yield

(f + h)(xk) − (f + h)(xk+1) ≥ η1κmdcξ(∆k;xk, νk)

≥ η1κmdcξ(∆min;xk, νk)

≥ η1κmdcν
2
minϵ

2

for all k ∈ K, which is a contradiction if {f(xk) + h(xk)} is not bounded below.

4. Proximal-quasi-Newton trust-region method. In this section, we consider
the computation of a trust-region step and develop a special case of Proposition 2.6 in
which

(4.1) φ(s;x) := f(x) + ∇f(x)
T
s+ 1

2s
TBs,

where B = BT . We assume that ∆ > 0 is fixed. For conciseness, we use the notation
φ(s) := φ(s;x) and ψ(s) := ψ(s;x) + χ(s; ∆). We work under Model Assumption 3.2,
i.e., we assume that ψ is proper and lsc with prox-boundedness coming from χ(·; ∆).

4.1. Computing a trust-region step. The following result states a fundamental
relationship between Gν and ∂ψ.

Lemma 4.1.
Let sj+1be given by (2.3) and Gν(sj)be defined by (2.5). Then,

Gν(sj) −∇φ(sj) ∈ ∂ψ(sj+1).(4.2a)

(B − ν−1I)(sj+1 − sj) ∈ ∇φ(sj+1) + ∂ψ(sj+1).(4.2b)

Proof. (4.2a) is a simple restatement of (2.4) and (4.2b) results from adding
∇φ(sj+1)to both sides of (2.4) and substituting the gradient of φ using (4.1).

The next result shows that (2.3) is a descent method when φ is a quadratic.

Lemma 4.2. Let {sj} be generated according to (2.3). For all j ≥ 0,

ψ(sj+1) + ∇φ(sj)
T

(sj+1 − sj) ≤ ψ(sj) − 1
2ν

−1∥sj+1 − sj∥2,(4.3a)

(φ+ ψ)(sj+1) ≤ (φ+ ψ)(sj) + 1
2 (sj+1 − sj)

T
(B − ν−1I)(sj+1 − sj).(4.3b)

Proof. Because sj+1 solves (2.3),

1
2ν

−1∥sj+1 − (sj − ν∇φ(sj))∥2 + ψ(sj+1) ≤ 1
2ν

−1∥ν∇φ(sj)∥2 + ψ(sj).

By expanding the squared norm in the left-hand-side of the above and cancelling the
common term ∥ν∇φ(sj)∥2, we obtain (4.3a). Because φ is quadratic,

φ(sj+1) = φ(sj) + ∇φ(sj)
T

(sj+1 − sj) + 1
2 (sj+1 − sj)

T
B(sj+1 − sj).

We now add ψ(sj+1) to both sides and use (4.3a) and obtain

(φ+ ψ)(sj+1) ≤ φ(sj) + ψ(sj) − 1
2ν

−1∥sj+1 − sj∥2 + 1
2 (sj+1 − sj)

T
B(sj+1 − sj)

= (φ+ ψ)(sj) + 1
2 (sj+1 − sj)

T
(B − ν−1I)(sj+1 − sj).
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We now examine two choices of ν > 0 that result in two decrease behaviors.

Corollary 4.3. Under the assumptions of Lemma 4.2, assume 0 < ν ≤ (1 −
θ)/∥B∥ for some θ ∈ (0, 1), or simply that ν > 0 if B = 0, in which case θ = 1. Then,

(4.4) (φ+ ψ)(sj+1) ≤ (φ+ ψ)(sj) − 1
2θν

−1 ∥sj − sj+1∥2, (j ≥ 0).

Proof. If B = 0, (4.4) with θ = 1 follows directly from (4.3a). If B ̸= 0, we have by
assumption (1 − θ)ν−1 ≥ ∥B∥, so that λmax(B − ν−1I) ≤ −θν−1 < 0, and therefore,

(sj+1 − sj)
T

(B − ν−1I)(sj+1 − sj) ≤ −θν−1 ∥sj+1 − sj∥2,

which combines with (4.3b) to complete the proof.

Corollary 4.4. Under the assumptions of Lemma 4.2, assume B ̸= 0, let 0 <
θ < 1/(4∥B∥) and νmin ≤ ν ≤ νmax, where

νmin :=
1 −

√
1 − 4θ∥B∥
2∥B∥ , νmax :=

1 +
√

1 − 4θ∥B∥
2∥B∥ .

Then, for all j ≥ 0,

(4.5) (φ+ψ)(sj+1) ≤ (φ+ψ)(sj)− 1
2θν

−2 ∥sj−sj+1∥2 = (φ+ψ)(sj)− 1
2θ∥Gν(sj)∥2.

Proof. Under our assumptions, the quadratic p(ν) := ∥B∥ν2 − ν + θ has the two

positive real roots νmin and νmax. Moreover, for all ν ∈ [νmin, νmax], p(ν) ≤ 0, which

can also be written ∥B∥ − ν−1 ≤ −θν−2. Therefore, if ν ∈ [νmin, νmax], then for all j,

(sj+1 − sj)
T

(B − ν−1I)(sj+1 − sj) ≤ −θν−2 ∥sj+1 − sj∥2 = −θ∥Gν(sj)∥2,

which combines with (4.3b) to complete the proof.

Because s0 = 0 and (φ + ψ)(s0) = f(x) + h(x) < +∞, if ν is chosen as in
Corollary 4.3 or Corollary 4.4, (2.3) generates iterates {sj} such that {(φ+ ψ)(sj)} is
monotonically decreasing and all its terms are finite. Finiteness implies that ∥sj∥ ≤ ∆
for all j ≥ 0, i.e., all iterates lie in the trust region. In particular, for any j ≥ 1,

(4.6) mk(sj+1;xk) ≤ mk(sj ;xk) ≤ mk(s1;xk) = mν
k(s1;xk),

where mν
k(s1;xk) = 1

2ν
−1∥s1 + ν∇f(xk)∥22 + (ψ + χ)(s1) and hence sj satisfies the

sufficient decrease condition (3.8b), and the final equality results from the fact that s1
is the same for any model of the form (4.1).

With regards to proximal gradient convergence, two situations may occur. In the
first, (2.3) results in sj0+1 = sj0 for a smallest index j0 > 0. In that case, (2.4) yields

0 ∈ ∂(φ+ ψ)(sj0),

i.e., we have identified a stationary point of (3.7) in a finite number of iterations, while
decreasing the value of mk at each iteration. Otherwise, sj+1 ≠ sj for all j ≥ 0, and the
next result establishes sub-linear convergence of the proximal gradient method (2.3).

Theorem 4.5. Let {sj} be generated according to (2.3) with ν as in Corollary 4.3.
Denote (φ+ ψ)low := inf(φ+ ψ) > −∞. Let vj+1 denote the left-hand side of (4.2b).
For any N ≥ 1,

min
j=0,...,N−1

∥vj+1∥ ≤
√

2

Nθ
(ν−1 − λmin(B)) ((φ+ ψ)(s0) − (φ+ ψ)low).
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Proof. We rearrange (4.4) and sum from iteration j = 0 to iteration j = N − 1:

N−1∑
j=0

∥sj − sj+1∥2 ≤ 2ν

θ
((φ+ ψ)(s0) − (φ+ ψ)(sN )) ≤ 2ν

θ
((φ+ ψ)(s0) − (φ+ ψ)low).

For any positive sequence {cj},

min
0≤j≤N−1

cj =

√
min

0≤j≤N−1
c2j ≤

√√√√ 1

N

N−1∑
j=0

c2j .

Therefore,

min
0≤j≤N−1

∥sj − sj+1∥ ≤
√

2ν

Nθ
((φ+ ψ)(s0) − (φ+ ψ)low).

Because ∥vj+1∥ ≤ ∥B − ν−1I∥ ∥sj − sj+1∥ = (ν−1 − λmin(B)) ∥sj − sj+1∥ ≤ ν−1∥sj −
sj+1∥, we obtain the desired result.

When solving (3.7), a reasonable stopping condition would be ∥vj+1∥ ≤ ϵ for a
user-chosen tolerance ϵ > 0. Theorem 4.5 indicates that such stopping condition is
attained after N(ϵ) iterations, where

N(ϵ) =

⌈
2

ϵ2θ
(ν−1 − λmin(B)) ((φ+ ψ)(s0) − (φ+ ψ)low)

⌉
.

A result similar to Theorem 4.5 can be established under the step size rule of
Corollary 4.4, with nearly identical proof.

Theorem 4.6. Let {sj} be generated according to (2.3) with ν as in Corollary 4.4
with 0 < θ < 1/(4∥B∥). Assume ψ, and therefore φ+ ψ, is bounded below and denote
(φ+ ψ)low := inf(φ+ ψ) > −∞. For any N ≥ 1,

min
j=0,...,N−1

∥Gν(sj+1)∥ ≤
√

2

Nθ
((φ+ ψ)(s0) − (φ+ ψ)low).

5. Proximal Operators for Trust-Region Subproblems. In this section,
we develop techniques for computing (2.3) for use in Steps 7 and 8 of Algorithm 3.1.
Many standard proximal operators for both convex and nonconvex prox-bounded
functions ψ have been worked out [4, 10], and new examples for nonconvex problems
continuously appear. Well-known examples include the firm-thresholding penalty [19],
the SCAD penalty [17], MCP penalty [44], lower C2 functions [21], any ℓpp-seminorm
for 0 < p < 1 [46, Appendix A], and other exotic operators, see e.g. [45, Table 1]. We
refer to such functions ψ as prox-friendly. However, Algorithm 3.1 requires evaluating
proximal operators for modified functions that combine a shift and a summation
with an indicator function. By Model Assumption 3.2, our model ψ(s;x) ≈ h(x+ s)
must coincide with h in value and subdifferential at s = 0. In particular, the choice
ψ(s;x) = h(x+ s) seems natural when h itself is prox-friendly. Here we consider

(5.1) ψ(s;x) := h(x+ s) + χ(s; ∆Bp),

where h is prox-friendly, x is a shift, and p ∈ {1, 2,∞}. Below, we provide closed form
solutions and/or efficient routines for (5.1) with focus on the following cases:

1. for an arbitrary separable prox-friendly h, we evaluate proxνψ(·;x) by leveraging
proxνh, but we restrict our attention to p = ∞. This allows us to consider (5.1)
with h(x) = λ∥x∥1 and h(x) = λ∥x∥0;

2. we consider h(x) = λ∥x∥1 in (5.1) for p = 2.
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5.1. p = ∞, h separable. For the special case of B∞, (2.1b) and (5.1) yield

(5.2) prox
νψ

(q) := argmin
s

1
2ν

−1∥s− q∥2 + h(x+ s) + χ(s; ∆B∞).

If h is separable, i.e., h(x) =
∑
i hi(xi), (5.2) decouples in each coordinate:

prox
νψ

(q)i = argmin
si

1
2ν

−1(si − qi)
2

+ hi(xi + si) + χ(si; [−∆,∆]).

Using the change of variable vi = xi + si, we may rewrite

prox
νψ

(q)i = argmin
vi

{ 1
2ν

−1(vi − xi − qi)
2

+ hi(vi) + χ(vi; [xi − ∆, xi + ∆])} − xi.

If h is convex, we may work backwards from the form of the solution. For any
pi ∈ proxνψ (q)i, either

1. |pi| < ∆, in which case pi ∈ proxνhi
(q + x)i − xi;

2. otherwise, |pi| = ∆ by construction, and

prox
νψ

(q)i = argmin
vi=xi±∆

( 1
2ν

−1(vi − (xi + qi))
2

+ hi(vi)) − xi

= argmin
si=±∆

1
2ν

−1(si − qi)
2

+ hi(xi + si) ⊆ {−∆, ∆}.

In such cases, the definition of convexity implies that set of bound-constrained solutions
includes the projection of the unconstrained solutions into the bounds. Because the
objective of (5.2) is strictly convex, equality holds:

prox
νψ

(q)i = { proj
[xi−∆,xi+∆]

(prox
νhi

(q + x)i)} − xi = proj
[−∆,∆]

(prox
νhi

(q + x)i − xi),

For example, let h(x) = λ∥x∥1. Then,

prox
νψ

(q)i = proj
[−∆,∆]

(prox
νλ|·|

(q + x)i − xi) = proj
[−∆,∆]



qi − νλ xi + qi > νλ

−xi |xi + qi| ≤ νλ

qi + νλ xi + qi < −νλ


= proj

[−∆,∆]

(
proj

[qi−νλ,qi+νλ]
(−xi)

)
.

When h is nonconvex, there may be a greater variety of cases. For instance, if
h(x) = λ∥x∥0, a global solution of (5.2) may be one of the bounds, or either of the
unconstrained local minimizers q and −x if they lie inside the bounds. A simple
strategy consists in evaluating the objective of (5.2) at those four points and choosing
one with lowest objective value.

5.2. p = 2, h(x) = λ∥x∥1. When using other norms to define the trust
region, additional computations are required. For certain norms, we can dualize h
to solve (5.2). We focus on h(x) = λ∥x∥1 with an ℓ2-norm trust-region throughout
because the ℓ2-norm is standard in the literature, and is used in section 7.1.

First, we rewrite the scaled ℓ1-norm using its conjugate:

λ∥x+ s∥1 = sup
w∈λB∞

wT (x+ s),
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recharacterizing (2.1b) and (5.1) as

(5.3) min
s

sup
w∈λB∞

1
2ν

−1∥s− q∥2 + wT (x+ s) + χ(s; ∆B2).

Strong duality holds in this case since the objective is convex, piecewise linear-quadratic,
and the primal solution is attained. We interchange the order of minimization and
maximization and complete squares in s and in w to obtain

(5.4) sup
w∈λB∞

min
s

1
2ν

−1∥s−q+νw∥2+χ(s; ∆B2)− 1
2ν

−1 ∥x+ q − νw∥2+ 1
2ν

−1∥x+q∥2.

The solution of the inner problem is

(5.5) s(w) := proj
∆B2

(q − νw).

We substitute (5.5) back into (5.4) to rewrite the dual objective as

(5.6) sup
w∈λB∞

1
2ν

−1 dist (q − νw; ∆B2)
2 − 1

2ν
−1 ∥x+ q − νw∥2 + 1

2ν
−1∥x+ q∥2.

The change of variable

(5.7) y = q − νw,

transforms (5.6) into

(5.8) min
q−νλ1≤y≤q+νλ1

1
2ν

−1
(
∥y + x∥2 − dist (y; ∆B2)

2
)
,

where 1 is a vector of all ones. As the value function of (5.3) with respect to s, the
objective of (5.8) is convex [36, Proposition 2.22]. The first-order optimality conditions
of (5.8) are

(5.9) 0 ∈ x+
y

max{1, ∥y∥/∆} + ν∂χ(y; [q − νλ1, q + νλ1]).

Once we have an optimal solution of (5.8) , denoted y+, we can evaluate (5.5) at the
corresponding w+ to obtain

s = proj
∆B2

(y+).

which solves (5.2). To characterize y+ more explicitly, we work backwards from
properties of the solution. There are only two possibilities to consider: y+ is in the
trust region, and y+ is outside of the trust region.

1. if ∥y+∥ < ∆, dist(y+; ∆B2) = 0, and (5.8) and (5.9) simplify:

s = y+ = proj
[q−νλ1,q+νλ1]

(−x),

where we used (5.5) and (5.7);
2. if ∥y+∥ ≥ ∆, (5.9) becomes

0 ∈ x+
∆

∥y∥y + ν∂χ(y; [q − νλ1, q + νλ1]).
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Multiplying through by ∥y∥/∆ yields

(5.10) 0 ∈ y +
∥y∥
∆
x+

ν∥y∥
∆

∂χ(y; [q − νλ1, q + νλ1]).

Suppose first that η := ∥y+∥ is known. A solution y+ to (5.10) can be obtained
by solving

min
y∈[q−νλ1,q+νλ1]

1
2∥y +

η

∆
x∥2

which can be written in closed form as

(5.11) y = proj
[q−νλ1,q+νλ1]

(
− η

∆
x
)
.

Taking the norm of each side of (5.11) gives a scalar root finding equation
that characterizes η:

η =

∥∥∥∥∥ proj
[q−νλ1,q+νλ1]

(
− η

∆
x
)∥∥∥∥∥ .

Once we have solved for η = ∥y+∥, we obtain y+ from (5.11), and, using (5.5),

s = proj
∆B2

(
proj

[q−νλ1,q+νλ1]

(
− η

∆
x
))

=

(
proj

[q−νλ1,q+νλ1]

(
− η

∆
x
)) ∆

η
.

6. A quadratic regularization variant. We now describe a variant of the
trust-region algorithm of the previous sections inspired by the modified Gauss-Newton
scheme proposed by Nesterov [30] in the context of nonlinear least-squares problems.
Here again, Cartis et al. [9] establish a complexity of O(ϵ−2) iterations to attain a
near-optimality condition under the assumption that h is convex and globally Lipschitz
continuous. In the sequel, we obtain the same complexity bound under Problem
Assumption 3.1. The quadratic regularization method decribed below is closely related
to the standard proximal gradient method with the exception that it employs an
adaptive steplength. It may be used as an alternative to a linesearch-based proximal
gradient method such as those of Li and Lin [24] and Boţ et al. [8].

In the quadratic regularization method, we use the linear model

(6.1) φ(s;x) = f(x) + ∇f(x)
T
s ≈ f(x+ s)

together with a model of ψ(s;x) that satisfies Model Assumption 3.2. The first
difference is that in the present setting, the Lipschitz constant of ∇φ(·;x) is L(x) = 0
for all x ∈ Rn. The second difference is that we must now assume that ψ(·;x) is
prox-bounded. In particular, there exists λx ∈ R∪{+∞} such that ψ(·;x)+ 1

2λ
−1
x ∥ ·∥2

is bounded below [36, Exercise 1.24c]. We refer to the supremum of all such λx as the
threshold of boundedness of ψ(·;x). If ψ(·;x) is itself bounded below, we may choose
λx = +∞. At x, we define

p(σ;x) := minimize
s

m(s;x, σ),(6.2a)

P (σ;x) := argmin
s

m(s;x, σ),(6.2b)
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where

(6.3) m(s;x, σ) := φ(s;x) + ψ(s;x) + 1
2σ∥s∥

2,

and σ > 0 is a regularization parameter. From x, the method computes a step
s ∈ P (σ;x). As earlier, let us also define

(6.4) ξ(σ;x) := f(x) + h(x) − p(σ;x) ≥ 0.

If we combine (6.1) with (6.3), we may write

(6.5) m(s;x, σ) = 1
2σ∥s+ σ−1∇f(x)∥2 + ψ(s;x) + f(x) − 1

2σ
−1∥∇f(x)∥2,

where the last two terms are independent of s. In (6.5), we recognize a model of
the form (3.4), so that minimizing (6.3) amounts to performing a single step of the
proximal gradient method with step size 1/σ and Lipschitz constant L = 0. The
decrease guaranteed by the proximal gradient method is given by (3.5), i.e.,

(6.6) ξ(x;σ) = f(x) + h(x) −m(s;x, σ) ≥ 1
2σ∥s∥

2,

so that

(6.7) f(x) + h(x) − (φ(s;x) + ψ(s;x)) ≥ σ∥s∥2,

provided that σ > 1/λx. Because of (6.7), there is no need for a sufficient decrease
assumption such as (3.8b) in the quadratic regularization method.

In view of (6.5), Proposition 2.3 applies to (6.2). In particular, p(σ;x) is continuous
in (σ, x), and P (σ;x) is nonempty and compact for all σ > 1/λx.

By Proposition 2.5, for any σ > 1/λx, if s ∈ P (σ;x), then 0 ∈ ∇f(x)+∂ψ(s;x)+σs.
Thus, we have the following optimality result.

Lemma 6.1. Let Model Assumption 3.2 be satisfied, ψ(·;x) be prox-bounded, and
let σ > 1/λx. Then ξ(σ;x) = 0 ⇐⇒ 0 ∈ P (σ;x) =⇒ x is first-order stationary
for (1.1).

As in the trust-region context, we require that the difference between the model
and the actual objective be bounded by a multiple of ∥sk∥2:

Step Assumption 6.1. There exists κm > 0 such that for all k,

(6.8) |f(xk + sk) + h(xk + sk) − φk(sk;xk) − ψ(sk;xk)| ≤ κm∥sk∥2.

Once a step s has been computed, its quality is assessed by comparing the decrease
in φ(·;x) +ψ(·;x) with that in the objective f + h, similarly to Algorithm 3.1. If both
are in strong agreement, σ decreases. Otherwise, σ increases. We state the overall
algorithm as Algorithm 6.1. Contrary to Algorithm 3.1, it is possible that, at certain
iterations, σk ≤ 1/λxk

, and in such a situation, it is possible that m(sk;xk, σk) = −∞,
and therefore that φ(sk;xk) + ψ(sk;xk) ≤ m(sk;xk, σk) = −∞. Because h is proper,
h(xk + sk) is either finite or +∞. In such a case, thanks to extended arithmetic rules,
ρk = 0, sk is rejected, and σk is increased. After a finite number of such increases, we
obtain σk > 1/λxk

.
We now combine (6.7) with Step Assumption 6.1 into the following result.

Theorem 6.2. Let Model Assumption 3.2 and Step Assumption 6.1 be satisfied,
ψ(·;xk) be prox-bounded for each k ∈ N with threshold of boundedness λxk

, and let

(6.9) σsucc := κm/(1 − η2) > 0.
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Algorithm 6.1 Nonsmooth quadratic regularization algorithm.

1: Choose constants 0 < η1 ≤ η2 < 1 and 0 < γ3 ≤ 1 < γ1 ≤ γ2.
2: Choose x0 ∈ Rn where h is finite, σ0 > 0, compute f(x0) + h(x0).
3: for k = 0, 1, . . . do
4: Define m(s;xk, σk) as in (6.3) satisfying Model Assumption 3.2 with L = 0.
5: Compute a solution sk of (6.2) such that Step Assumption 6.1 holds.
6: Compute the ratio

ρk :=
f(xk) + h(xk) − (f(xk + sk) + h(xk + sk))

φ(0;xk) + ψ(0;xk) − (φ(sk;xk) + ψ(sk;xk))
.

7: If ρk ≥ η1, set xk+1 = xk + sk. Otherwise, set xk+1 = xk.
8: Update the regularization parameter according to

σk+1 ∈


[γ3σk, σk] if ρk ≥ η2,

[σk, γ1σk] if η1 ≤ ρk < η2,

[γ1σk, γ2σk] if ρk < η1.

9: end for

If xk is not first-order stationary and σk ≥ max(1/λxk
, σsucc), then iteration k is very

successful and σk+1 ≤ σk.

Proof. Let sk be the step computed at iteration k of Algorithm 6.1. Because xk
is not first-order stationary, sk ̸= 0. Step Assumption 6.1 and (6.7) combine to yield

|ρk − 1| =
|f(xk + sk) + h(xk + sk) − (φ(sk;xk) + ψ(sk;xk))|

φ(0;xk) + ψ(0;xk) − (φ(sk;xk) + ψ(sk;xk))
≤ κm∥sk∥2

σk∥sk∥2
.

After simplifying by ∥sk∥2, we obtain σk ≥ σsucc =⇒ ρk ≥ η2.

If there exists λ > 0 such that λxk
≥ λ for all k ∈ N, Theorem 6.2 ensures

existence of a constant σmax > 0 such that

(6.10) σk ≤ σmax := min(σ0, γ2 max(1/λ, σsucc)) > 0 for all k ∈ N.

We paraphrase the above assumption by stating that ψ(·;xk) is uniformly prox-bounded.
A result analogous to Theorem 3.5 holds for Algorithm 6.1. We omit the proof, as

it is nearly identical.

Theorem 6.3. Let Model Assumption 3.2 and Step Assumption 6.1 be satisfied,
and ψ(·;xk) be uniformly prox-bounded. If Algorithm 6.1 only generates finitely many
successful iterations, xk = x∗ for sufficiently large k and x∗ is first-order critical.

According to Proposition 2.3 part 2, and the identification ν = σ−1, p(σ;x)
increases as σ increases, so that ξ(σ;x) decreases as σ increases, and (6.10) yields

(6.11) ξ(σk;xk) ≥ ξ(σmax;xk) for all k ∈ N.

Lemma 6.1, (6.7) and (6.11) suggest using ξ(σmax;xk)
1
2 as stationarity measure.

Let ϵ > 0 be a tolerance set by the user and consider the sets (3.14). We are now in
position to establish complexity results analogous to those obtained for Algorithm 3.1.
The proof is nearly identical and is omitted.
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Theorem 6.4. Let Model Assumption 3.2 and Step Assumption 6.1 be satisfied,
and ψ(·;xk) be uniformly prox-bounded. Assume there are infinitely many successful
iterations and that f(xk) + h(xk) ≥ (f + h)low for all k ∈ N. Then, for all ϵ ∈ (0, 1),

(6.12) |S(ϵ)| = O(ϵ−2), |U(ϵ)| = O(ϵ−2), |S(ϵ)| + |U(ϵ)| = O(ϵ−2).

7. Implementation and numerical results. Algorithms 3.1 and 6.1 are imple-
mented in Julia [5] and are available at github.com/UW-AMO/TRNC, along with scripts
to reproduce our experiments. Our design allows the user to choose a method to
compute a step, an important feature given the nonstandard ψk + χk operator.

We compare the performance of Algorithm 3.1 (TR) to other proximal quasi-
Newton routines: PANOC [38] and ZeroFPR [39]. PANOC can be viewed as a proximal
gradient descent scheme accelerated by limited-memory BFGS steps. It performs
proximal gradient iterations with a backtracking linesearch, and then 20 quasi-Newton
steps computed using the proximal gradient method. ZeroFPR is similar, but takes a
fixed number of quasi-Newton steps between each proximal gradient step; it defaults to
proximal gradient descent if no progress is made during the inner quasi-Newton steps.
To compare, we count gradient evaluations as well as proximal operator evaluations,
but in our example problems, proximal evaluations are far cheaper than gradients.

In the following experiments, we set ψ(s;xk) := h(xk + s). Our stopping criteria

for Algorithm 3.1 is ξ(∆k;xk, νk)1/2, which we use as a proxy for the first-order error

measure ν−1
k ξ(∆min;xk, νk)1/2 defined in (3.6). We set ∆0 := 1.0. We compute trust-

region steps using the proximal-gradient (PG) method with step length chosen as in
Corollary 4.3, denoted TR-PG in figures and tables. The user could choose accelerated
variants for the subproblem, including our quadratic regularization procedure Algo-
rithm 6.1 (R2), signified by TR-R2. In our experiments, the latter performed similarly
to the proximal gradient method, although it typically required fewer inner iterations.
We use proximal operators that include both ψ(·;xk) and the indicator of the trust
region as described in section 5. The criticality measure used in the inner PG iterations
is the norm of the subgradient (4.2b), while that used in the R2 inner iterations is

ξ(σk;xk)1/2, which is a proxy for ξ(σmax;xk)1/2. We set the inner tolerance to

min(0.01, ξ(∆k;xk + sk,1, νk)
1
2 ) ξ(∆k;xk + sk,1, νk),

which is inspired from inexact Newton methods to encourage fast local convergence.
Note that ξ is computed with the first step sk,1 from Line 7 of Algorithm 3.1.

We use automatic differentiation as implemented in the ForwardDiff package [35]
to obtain ∇f(x) and construct limited-memory quasi-Newton approximations by way
of the LinearOperators package [31]. Below, we use LSR1 and LBFGS approximations
with memory 5 for the BPDN and ODE examples, respectively.

7.1. LASSO/BPDN. The first set of experiments concerns LASSO/basis pursuit
de-noise (BPDN) problems, which arise in statistical [40] and compressed sensing [16]
applications. We seek to recover a sparse signal xtrue ∈ Rn given observed noisy data
b ∈ Rm. xtrue is a sparse vector containing mostly zeros and 10 values of ±1 where
both the index of the nonzero entry and ± are randomly generated.

We set m = 200, n = 512, b := Axtrue + ε where ε ∼ N (0, .01) and A to

have orthonormal rows—AT is generated by taking the Q factor in the thin QR
decomposition of a random n×m matrix. To recover x, we solve

(7.1) minimize
x

1
2∥Ax− b∥22 + h(x).
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Fig. 7.1. BPDN results (7.1) with Algorithm 3.1 and a proximal gradient subsolver (TR-PG),
PANOC and ZeroFPR (ZFP): Signal plots (left) and objective value history (right). ∆Bp indicates
the norm used to define the trust region.

We first consider h(x) = λ∥x∥p for p ∈ {0, 1} with λ = 0.1∥AT b∥∞ in the vein of [41],
and employ both the ℓ2 and ℓ∞ norms to define the trust region. We also consider
h(x) = χ(x;λB0) with λ = 10 and an ℓ∞-norm trust region. We set the maximum
number of inner iterations to 5000 and ϵ = 10−3. The quasi-Newton model is defined
by a limited-memory SR1 approximation with memory 5. All algorithms use x0 = 0.

Table 7.1 and Figure 7.1 summarize our results. Table 7.1 shows that Algorithm 3.1
performs comparably to PANOC and ZeroFPR in terms of parameter fit, it performs
significantly fewer gradient evaluations and significantly more proximal operator
evaluations. Thus there is an advantage when proximal evaluations are cheap relative
to gradient evaluations, especially in situations where the proximal operator of ψ
is simpler or cheaper than that of h. All algorithms yield nearly identical solution
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quality. The objective value history in Figure 7.1 shows a steeper initial decrease for
Algorithm 3.1 with shorter tails in all cases. Results with R2 as subproblem solver are
nearly identical though R2 performed fewer inner iterations than PG.

Table 7.1
BPDN results (7.1) with Algorithm 3.1 and a proximal gradient subsolver (TR-PG), PANOC

and ZeroFPR (ZFP). ∆Bp indicates the norm used in the trust region. The true value of h(·)/λ is
10 for ∥ · ∥1 and ∥ · ∥0, but 0 for χ(·;λB0).

h = λ∥ · ∥1, ∆B2 h = λ∥ · ∥0, ∆B∞ h = χ(·;λB0), ∆B∞
True TR-PG PANOC ZFP TR-PG PANOC ZFP TR-PG PANOC ZFP

f(x) 0.020 0.005 0.005 0.005 0.019 0.019 0.019 0.019 0.019 0.019
h(x)/λ 10/0 10.750 10.767 10.750 10 10 10 0 0 0

∥x− xtrue∥2/∥A∥ 0 0.134 0.141 0.133 0.055 0.055 0.056 0.054 0.056 0.055
∇f evals 24 78 45 14 69 23 6 12 10

proxνψ calls 270 52 95 90 36 57 32 6 14

7.2. A nonlinear inverse problem. We next consider an inverse problem
consisting in recovering the regularized solution to a system of nonlinear ODEs.
We seek parameters xtrue ∈ Rn given observed noisy data b = F (xtrue) + ε where
F : Rn → R

m and ε ∼ N (0, 0.1). The data generating mechanism F is given by the
FitzHugh [18] and Nagumo et al. [29] model for neuron activation

(7.2)
dV

dt
= (V − V 3/3 −W + x1)x−1

2 ,
dW

dt
= x2(x3V − x4W + x5),

which, if x1 = x4 = x5 = 0, becomes the Van der Pol [42] oscillator

(7.3)
dV

dt
= (V − V 3/3 −W )x−1

2 ,
dW

dt
= x2(x3V ).

Both models are highly nonlinear and ill-conditioned.
We use initial conditions (V,W ) = (2, 0) and discretize the time interval [0, 20]

at 0.2 second increments. For given x, let V (t;x) and W (t;x) be solutions of (7.2).
Define variables vi(x) ≈ V (ti;x), wi(x) ≈ W (ti;x), i = 1, . . . , n + 1 where n =
20/0.2 = 100. We set F (x) := (v(x), w(x)), where v(x) := (v1(x), . . . , vn+1(x)) and
w(x) := (w1(x), . . . , wn+1(x)). We generate b using xtrue = (0, 0.2, 1, 0, 0), which
corresponds to a solve of the Van der Pol oscillator. To recover x, we solve

(7.4) minimize
x

1
2∥F (x) − b∥22 + h(x),

with h(x) = ∥x∥0. ODE solves are performed with the DifferentialEquations.jl package
[34], which features an mechanism for choosing the solver, and provides ∇v(x) and
∇w(x) by way of automatic differentiation. We set ϵ = 10−3 in all methods, the
maximum iterations to 500, and use an LBFGS approximation of the Hessian. For
Algorithm 3.1, the maximum number of inner iterations is 5000.

Table 7.2 summarizes our results and Figure 7.2 shows overall data fit and
objective function traces. Algorithm 3.1 with either PG or R2 as subsolver, as well
as ZeroFPR, correctly identified the nonzero pattern of x with reasonable error in
the nonzero elements. PANOC performs well initially, but its linesearch routine
terminates prematurely as it generates a step length that is below a preset tolerance
of 10−7. At that point, PANOC terminates. ZeroFPR performs well, but needs many
iterations to decrease the objective value to the same level as Algorithm 3.1. As

Cahier du GERAD G-2021-12 Commit (None) by (None) on (None)



26 [toc]

in section 7.1, Algorithm 3.1 converges with significantly fewer gradient evaluations
than ZeroFPR, though with a significant number of proximal operator evaluations.
However, gradient evaluations in (7.2) are far more expensive and time consuming
than proximal evaluations. Figure 7.2 also reveals that the final iterate generated by
Algorithm 3.1 and ZeroFPR results in trajectories that are visually indistinguishable
from those associated with the exact solution. Algorithm 3.1 with Algorithm 6.1 as a
subsolver reaches a similar solution as ZeroFPR, but requires much fewer proximal
and gradient evaluations. The results appear in Table 7.2. Plots are nearly identical
to those in Figure 7.2, and are hence omitted.

Table 7.2
Results for Algorithm 3.1 with proximal gradient (TR-PG) and Algorithm 6.1 (TR-R2) sub-

solvers, PANOC, and ZeroFPR applied to (7.2) with h = ∥ · ∥0, ∆B∞ and LBFGS approximation.

Parameters
True TR-PG TR-R2 PANOC ZFP Measure True TR-PG TR-R2 PANOC ZFP
0 0 0 0.840 0 f(x) 1.058 1.078 1.266 73.888 1.048
0.2 0.170 0.130 0.690 0.188 h(x) 2 2 3 5 3
1.0 1.136 1.408 0.952 1.048 ||x− xtrue||2 0 0.139 0.427 1.636 0.051
0 0 0.107 0.983 0.010 ∇f evals 76 61 43 422
0 0 0 0.874 0 proxνψ calls 60143 22617 30 421
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Fig. 7.2. Solution of (7.2) with h(x) = ∥x∥0 in (7.4), ∆B∞ and LBFGS approximation.

We also compare Algorithm 6.1 to our own implementation of a standard proximal
gradient with linesearch on (7.4). We set the stopping tolerance for both to 10−3.
Table 7.3 summarizes our results and Figure 7.3 shows overall data fit and objective
function traces. Both Algorithm 6.1 and proximal gradient descent converge much
slower than Algorithm 3.1, where we use curvature information. Neither algorithm
correctly identified the nonzero pattern of x within 5000 iterations, although Algo-
rithm 6.1 descends considerably faster than proximal gradient descent, and attains the
stopping tolerance. Figure 7.3 reveals that the final iterate generated by Algorithm 6.1
is closer to the solution than that of proximal gradient descent, though both terminated
far from the correct answer.

8. Discussion and perspectives. We demonstrated the performance of trust-
region methods using quasi-Newton models against two linesearch methods constrained
to LBFGS models, and observed faster convergence curves with fewer gradient evalua-
tions. Many regularizers in (1.1) have a closed-form or efficiently-computable proximal
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Table 7.3
Results for Algorithm 6.1 (R2) and proximal gradient descent (PG) applied to (7.2) with

h = ∥ · ∥0.

Parameters
True R2 PG Measure True R2 PG
0 0 0.228 f(x) 1.058 3.852 24.246

0.200 0.142 0.245 h(x) 2 4 5
1.000 1.392 1.083 ||x− xtrue||2 0 0.737 1.045
0 0.621 0.916 ∇f evals 3892 5010
0 0.022 0.440 proxνψ calls 8891 5009
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Fig. 7.3. Solution of (7.2) for h = ∥ · ∥0 in (7.4) with PG with linesearch and Algorithm 6.1.

operator, whose cost is often dominated by that of a function or gradient evaluation
in a large inverse problem.

The worst-case iteration complexity bound of Algorithm 3.1 matches the best
known bound for trust-region methods in smooth optimization. Algorithm 6.1, a
first-order method that is related to the proximal gradient method with adaptive
steplength, does not require prior knowledge or estimation of a Lipschitz constant, and
has a straightforward complexity analysis similar to that of Algorithm 3.1. In practice,
using curvature information in Algorithm 3.1 proved useful for efficiently estimating
highly nonlinear nonsmooth models. Convergence of trust-region methods for smooth
optimization can be established even if Hessian approximations are unbounded, pro-
vided they do not deteriorate too fast. It may be possible to generalize our analysis
along similar lines.

Interesting directions left to future work include implementation and analysis
for inexact function, gradient, and proximal operator evaluations, and extensions of
our results to cubic regularization, and more general nonlinear stepsize control-type
methods, such as those of [20].
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